These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38619872)

  • 1. Delving into theoretical and computational considerations for accurate calculation of chemical shifts in paramagnetic transition metal systems using quantum chemical methods.
    Islam MA; Pell AJ
    Phys Chem Chem Phys; 2024 Apr; 26(16):12786-12798. PubMed ID: 38619872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron correlation and vibrational effects in predictions of paramagnetic NMR shifts.
    Jaworski A; Hedin N
    Phys Chem Chem Phys; 2022 Jun; 24(25):15230-15244. PubMed ID: 35703010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paramagnetic Effects in NMR Spectroscopy of Transition-Metal Complexes: Principles and Chemical Concepts.
    Novotny J; Komorovsky S; Marek R
    Acc Chem Res; 2024 May; 57(10):1467-1477. PubMed ID: 38687879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems.
    Rouf SA; Mareš J; Vaara J
    J Chem Theory Comput; 2017 Aug; 13(8):3731-3745. PubMed ID: 28636359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of the spin Hamiltonian parameters in Co(II)S4 complexes, using density functional theory and correlated ab initio methods.
    Maganas D; Sottini S; Kyritsis P; Groenen EJ; Neese F
    Inorg Chem; 2011 Sep; 50(18):8741-54. PubMed ID: 21848258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paramagnetic Nuclear Magnetic Resonance Shifts for Triplet Systems and Beyond with Modern Relativistic Density Functional Methods.
    Franzke YJ; Bruder F; Gillhuber S; Holzer C; Weigend F
    J Phys Chem A; 2024 Jan; 128(3):670-686. PubMed ID: 38195394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ¹H Chemical Shifts in Paramagnetic Co(II) Pyrazolylborate Complexes: A First-Principles Study.
    Rouf SA; Mareš J; Vaara J
    J Chem Theory Comput; 2015 Apr; 11(4):1683-91. PubMed ID: 26574378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-Spin Structure and Metal-Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts.
    Bora PL; Novotný J; Ruud K; Komorovsky S; Marek R
    J Chem Theory Comput; 2019 Jan; 15(1):201-214. PubMed ID: 30485092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory.
    Autschbach J; Patchkovskii S; Pritchard B
    J Chem Theory Comput; 2011 Jul; 7(7):2175-88. PubMed ID: 26606487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.
    Mondal A; Gaultois MW; Pell AJ; Iannuzzi M; Grey CP; Hutter J; Kaupp M
    J Chem Theory Comput; 2018 Jan; 14(1):377-394. PubMed ID: 29182320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines.
    Novotný J; Přichystal D; Sojka M; Komorovsky S; Nečas M; Marek R
    Inorg Chem; 2018 Jan; 57(2):641-652. PubMed ID: 29185727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating NMR Chemical Shifts for Paramagnetic Metal Complexes from First-Principles.
    Gendron F; Sharkas K; Autschbach J
    J Phys Chem Lett; 2015 Jun; 6(12):2183-8. PubMed ID: 26266589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio paramagnetic NMR shifts via point-dipole approximation in a large magnetic-anisotropy Co(ii) complex.
    Mareš J; Vaara J
    Phys Chem Chem Phys; 2018 Sep; 20(35):22547-22555. PubMed ID: 30141806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay of Through-Bond Hyperfine and Substituent Effects on the NMR Chemical Shifts in Ru(III) Complexes.
    Jeremias L; Novotný J; Repisky M; Komorovsky S; Marek R
    Inorg Chem; 2018 Aug; 57(15):8748-8759. PubMed ID: 30004686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational studies of electron paramagnetic resonance parameters for paramagnetic molybdenum complexes. 1. Method validation on small and medium-sized systems.
    Fritscher J; Hrobarik P; Kaupp M
    J Phys Chem B; 2007 May; 111(17):4616-29. PubMed ID: 17408258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum-Chemical Approach to NMR Chemical Shifts in Paramagnetic Solids Applied to LiFePO
    Mondal A; Kaupp M
    J Phys Chem Lett; 2018 Apr; 9(7):1480-1484. PubMed ID: 29513536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic Properties and Electronic Structure of the
    Sanakis Y; Krzystek J; Maganas D; Grigoropoulos A; Ferentinos E; Kostakis MG; Petroulea V; Pissas M; Thirunavukkuarasu K; Wernsdorfer W; Neese F; Kyritsis P
    Inorg Chem; 2020 Sep; 59(18):13281-13294. PubMed ID: 32897702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculating electron paramagnetic resonance g-matrices for triplet state molecules from multireference spin-orbit configuration interaction wave functions.
    Tatchen J; Kleinschmidt M; Marian CM
    J Chem Phys; 2009 Apr; 130(15):154106. PubMed ID: 19388735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules.
    Martin B; Autschbach J
    J Chem Phys; 2015 Feb; 142(5):054108. PubMed ID: 25662637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.