BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38619888)

  • 1. Modes of action and potential as a peptide-based biofungicide of a plant defensin MtDef4.
    Li H; Kalunke R; Tetorya M; Czymmek KJ; Shah DM
    Mol Plant Pathol; 2024 Apr; 25(4):e13458. PubMed ID: 38619888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant defensin MtDef4-derived antifungal peptide with multiple modes of action and potential as a bio-inspired fungicide.
    Tetorya M; Li H; Djami-Tchatchou AT; Buchko GW; Czymmek KJ; Shah DM
    Mol Plant Pathol; 2023 Aug; 24(8):896-913. PubMed ID: 37036170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry.
    Sagaram US; El-Mounadi K; Buchko GW; Berg HR; Kaur J; Pandurangi RS; Smith TJ; Shah DM
    PLoS One; 2013; 8(12):e82485. PubMed ID: 24324798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum.
    Sagaram US; Pandurangi R; Kaur J; Smith TJ; Shah DM
    PLoS One; 2011 Apr; 6(4):e18550. PubMed ID: 21533249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens.
    Li H; Velivelli SLS; Shah DM
    Mol Plant Microbe Interact; 2019 Dec; 32(12):1649-1664. PubMed ID: 31425003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection.
    Velivelli SLS; Czymmek KJ; Li H; Shaw JB; Buchko GW; Shah DM
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):16043-16054. PubMed ID: 32571919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant defensin antibacterial mode of action against Pseudomonas species.
    Sathoff AE; Lewenza S; Samac DA
    BMC Microbiol; 2020 Jun; 20(1):173. PubMed ID: 32560676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal mechanisms of a plant defensin MtDef4 are not conserved between the ascomycete fungi Neurospora crassa and Fusarium graminearum.
    El-Mounadi K; Islam KT; Hernández-Ortiz P; Read ND; Shah DM
    Mol Microbiol; 2016 May; 100(3):542-59. PubMed ID: 26801962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular targeting of an evolutionarily conserved plant defensin MtDef4.2 determines the outcome of plant-pathogen interaction in transgenic Arabidopsis.
    Kaur J; Thokala M; Robert-Seilaniantz A; Zhao P; Peyret H; Berg H; Pandey S; Jones J; Shah D
    Mol Plant Pathol; 2012 Dec; 13(9):1032-46. PubMed ID: 22776629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.
    Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q
    Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific domains of plant defensins differentially disrupt colony initiation, cell fusion and calcium homeostasis in Neurospora crassa.
    Muñoz A; Chu M; Marris PI; Sagaram US; Kaur J; Shah DM; Read ND
    Mol Microbiol; 2014 Jun; 92(6):1357-74. PubMed ID: 24773060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat.
    Kaur J; Fellers J; Adholeya A; Velivelli SL; El-Mounadi K; Nersesian N; Clemente T; Shah D
    Transgenic Res; 2017 Feb; 26(1):37-49. PubMed ID: 27582300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Defensin Peptides have Antifungal and Antibacterial Activity Against Human and Plant Pathogens.
    Sathoff AE; Velivelli S; Shah DM; Samac DA
    Phytopathology; 2019 Mar; 109(3):402-408. PubMed ID: 30252607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live-cell Imaging of Fungal Cells to Investigate Modes of Entry and Subcellular Localization of Antifungal Plant Defensins.
    Islam KT; Shah DM; El-Mounadi K
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary Mode of Action of the Novel Sulfonamide Fungicide against
    Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447
    [No Abstract]   [Full Text] [Related]  

  • 17. Small Cationic Cysteine-Rich Defensin-Derived Antifungal Peptide Controls White Mold in Soybean.
    Djami-Tchatchou AT; Tetorya M; Godwin J; Codjoe JM; Li H; Shah DM
    J Fungi (Basel); 2023 Aug; 9(9):. PubMed ID: 37754982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of osthol-based botanical fungicides and their antifungal application in crop protection.
    Guo Y; Chen J; Ren D; Du B; Wu L; Zhang Y; Wang Z; Qian S
    Bioorg Med Chem; 2021 Jun; 40():116184. PubMed ID: 33971489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata.
    Dracatos PM; van der Weerden NL; Carroll KT; Johnson ED; Plummer KM; Anderson MA
    Mol Plant Pathol; 2014 Jan; 15(1):67-79. PubMed ID: 24015961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of GC-MS based metabolic fingerprinting for fast exploration of fungicide modes of action.
    Hu Z; Dai T; Li L; Liu P; Liu X
    BMC Microbiol; 2019 Jun; 19(1):141. PubMed ID: 31234789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.