These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38619911)

  • 1. High-Density Microporous Drainage-Integrating Sheath Flow Generator for Streamlining Microfluidic Cell Sorting Systems.
    Hayashi A; Hemmi R; Saito Y; Utoh R; Taniguchi T; Yamada M
    Anal Chem; 2024 Apr; 96(17):6764-6773. PubMed ID: 38619911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.
    Li X; Chen W; Liu G; Lu W; Fu J
    Lab Chip; 2014 Jul; 14(14):2565-75. PubMed ID: 24895109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slanted, asymmetric microfluidic lattices as size-selective sieves for continuous particle/cell sorting.
    Yamada M; Seko W; Yanai T; Ninomiya K; Seki M
    Lab Chip; 2017 Jan; 17(2):304-314. PubMed ID: 27975084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numbering-up strategy of hydrodynamic microfluidic filters for continuous-flow high-throughput cell sorting.
    Ozawa R; Iwadate H; Toyoda H; Yamada M; Seki M
    Lab Chip; 2019 May; 19(10):1828-1837. PubMed ID: 30998230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.
    Cha KJ; Kim DS
    Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle sorting using a porous membrane in a microfluidic device.
    Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN
    Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design.
    Ung WL; Mutafopulos K; Spink P; Rambach RW; Franke T; Weitz DA
    Lab Chip; 2017 Nov; 17(23):4059-4069. PubMed ID: 28994439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoporous micro-element arrays for particle interception in microfluidic cell separation.
    Chen GD; Fachin F; Colombini E; Wardle BL; Toner M
    Lab Chip; 2012 Sep; 12(17):3159-67. PubMed ID: 22763858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portable platform for leukocyte extraction from blood using sheath-free microfluidic DLD.
    Chavez-Pineda OG; Rodriguez-Moncayo R; Gonzalez-Suarez AM; Guevara-Pantoja PE; Maravillas-Montero JL; Garcia-Cordero JL
    Lab Chip; 2024 Apr; 24(9):2575-2589. PubMed ID: 38646820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers.
    Thangawng AL; Howell PB; Richards JJ; Erickson JS; Ligler FS
    Lab Chip; 2009 Nov; 9(21):3126-30. PubMed ID: 19823729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-phase flow in microfluidic-chip design of hydrodynamic filtration for cell particle sorting.
    Yoon K; Jung HW; Chun MS
    Electrophoresis; 2020 Jun; 41(10-11):1002-1010. PubMed ID: 32097495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permanent superhydrophilic surface modification in microporous polydimethylsiloxane sponge for multi-functional applications.
    Bakshi S; Pandey K; Bose S; Gunjan ; Paul D; Nayak R
    J Colloid Interface Sci; 2019 Sep; 552():34-42. PubMed ID: 31102847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.