These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38619960)

  • 1. On Practical Robust Reinforcement Learning: Adjacent Uncertainty Set and Double-Agent Algorithm.
    Hwang U; Hong S
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38619960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An immediate-return reinforcement learning for the atypical Markov decision processes.
    Pan Z; Wen G; Tan Z; Yin S; Hu X
    Front Neurorobot; 2022; 16():1012427. PubMed ID: 36582302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling Up Q-Learning via Exploiting State-Action Equivalence.
    Lyu Y; Côme A; Zhang Y; Talebi MS
    Entropy (Basel); 2023 Mar; 25(4):. PubMed ID: 37190372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample-Efficient Reinforcement Learning for Linearly-Parameterized MDPs with a Generative Model.
    Wang B; Yan Y; Fan J
    Adv Neural Inf Process Syst; 2021 Dec; 34():16671-16685. PubMed ID: 36168331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameterized MDPs and Reinforcement Learning Problems-A Maximum Entropy Principle-Based Framework.
    Srivastava A; Salapaka SM
    IEEE Trans Cybern; 2022 Sep; 52(9):9339-9351. PubMed ID: 34406959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical approximate policy iteration with binary-tree state space decomposition.
    Xu X; Liu C; Yang SX; Hu D
    IEEE Trans Neural Netw; 2011 Dec; 22(12):1863-77. PubMed ID: 21990333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample Efficient Deep Reinforcement Learning With Online State Abstraction and Causal Transformer Model Prediction.
    Lan Y; Xu X; Fang Q; Hao J
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37581972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning-Based DoS Attack Power Allocation in Multiprocess Systems.
    Huang M; Ding K; Dey S; Li Y; Shi L
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):8017-8030. PubMed ID: 35167483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action Candidate Driven Clipped Double Q-Learning for Discrete and Continuous Action Tasks.
    Jiang H; Li G; Xie J; Yang J
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5269-5279. PubMed ID: 36166566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust reinforcement learning.
    Morimoto J; Doya K
    Neural Comput; 2005 Feb; 17(2):335-59. PubMed ID: 15720771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Reinforcement Learning in Asynchronous Environments.
    Travnik JB; Mathewson KW; Sutton RS; Pilarski PM
    Front Robot AI; 2018; 5():79. PubMed ID: 33500958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOO-MDP: An Object-Oriented Representation for Cooperative Multiagent Reinforcement Learning.
    Da Silva FL; Glatt R; Costa AHR
    IEEE Trans Cybern; 2019 Feb; 49(2):567-579. PubMed ID: 29990289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to trade via direct reinforcement.
    Moody J; Saffell M
    IEEE Trans Neural Netw; 2001; 12(4):875-89. PubMed ID: 18249919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation learning for continuous action spaces is beneficial for efficient policy learning.
    Zhao T; Wang Y; Sun W; Chen Y; Niu G; Sugiyama M
    Neural Netw; 2023 Feb; 159():137-152. PubMed ID: 36566604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast saddle-point dynamical system approach to robust deep learning.
    Esfandiari Y; Balu A; Ebrahimi K; Vaidya U; Elia N; Sarkar S
    Neural Netw; 2021 Jul; 139():33-44. PubMed ID: 33677377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning.
    Guo X; Chen P; Liang S; Jiao Z; Li L; Yan J; Huang Y; Liu Y; Fan W
    Med Decis Making; 2022 Nov; 42(8):1064-1077. PubMed ID: 35775610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Maximum Divergence Approach to Optimal Policy in Deep Reinforcement Learning.
    Yang Z; Qu H; Fu M; Hu W; Zhao Y
    IEEE Trans Cybern; 2023 Mar; 53(3):1499-1510. PubMed ID: 34478393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning and Planning for Time-Varying MDPs Using Maximum Likelihood Estimation.
    Ornik M; Topcu U
    J Mach Learn Res; 2021; 22():1-40. PubMed ID: 35002545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified analysis of value-function-based reinforcement- learning algorithms.
    Szepesvári C; Littman ML
    Neural Comput; 1999 Nov; 11(8):2017-59. PubMed ID: 10578043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.