These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38619963)

  • 1. NGDE: A Niching-Based Gradient-Directed Evolution Algorithm for Nonconvex Optimization.
    Yu Q; Liang X; Li M; Jian L
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38619963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution.
    Biswas S; Kundu S; Das S
    IEEE Trans Cybern; 2014 Oct; 44(10):1726-37. PubMed ID: 25222717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Multimodal Parameters: A Bare-Bones Niching Differential Evolution Approach.
    Gong YJ; Zhang J; Zhou Y
    IEEE Trans Neural Netw Learn Syst; 2018 Jul; 29(7):2944-2959. PubMed ID: 28644814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Probabilistic Niching Evolutionary Computation Framework Based on Binary Space Partitioning.
    Huang T; Gong YJ; Chen WN; Wang H; Zhang J
    IEEE Trans Cybern; 2022 Jan; 52(1):51-64. PubMed ID: 32167922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Estimation Distribution Distributed Differential Evolution for Multimodal Optimization Problems.
    Wang ZJ; Zhou YR; Zhang J
    IEEE Trans Cybern; 2022 Jul; 52(7):6059-6070. PubMed ID: 33373312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OPTIMAL COMPUTATIONAL AND STATISTICAL RATES OF CONVERGENCE FOR SPARSE NONCONVEX LEARNING PROBLEMS.
    Wang Z; Liu H; Zhang T
    Ann Stat; 2014; 42(6):2164-2201. PubMed ID: 25544785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Niche Center for Multimodal Optimization Problems.
    Jiang Y; Zhan ZH; Tan KC; Zhang J
    IEEE Trans Cybern; 2023 Apr; 53(4):2544-2557. PubMed ID: 34919526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local Binary Pattern-Based Adaptive Differential Evolution for Multimodal Optimization Problems.
    Zhao H; Zhan ZH; Lin Y; Chen X; Luo XN; Zhang J; Kwong S; Zhang J
    IEEE Trans Cybern; 2020 Jul; 50(7):3343-3357. PubMed ID: 31403453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces.
    Geiersbach C; Scarinci T
    Comput Optim Appl; 2021; 78(3):705-740. PubMed ID: 33707813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems.
    Wang Y; Cai Z; Guo G; Zhou Y
    IEEE Trans Syst Man Cybern B Cybern; 2007 Jun; 37(3):560-75. PubMed ID: 17550112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A subgradient-based neurodynamic algorithm to constrained nonsmooth nonconvex interval-valued optimization.
    Liu J; Liao X; Dong JS; Mansoori A
    Neural Netw; 2023 Mar; 160():259-273. PubMed ID: 36709530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary niching in the GAtor genetic algorithm for molecular crystal structure prediction.
    Curtis F; Rose T; Marom N
    Faraday Discuss; 2018 Oct; 211(0):61-77. PubMed ID: 30073236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonsmooth Optimization-Based Model and Algorithm for Semisupervised Clustering.
    Bagirov AM; Taheri S; Bai F; Zheng F
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5517-5530. PubMed ID: 34851837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speed and convergence properties of gradient algorithms for optimization of IMRT.
    Zhang X; Liu H; Wang X; Dong L; Wu Q; Mohan R
    Med Phys; 2004 May; 31(5):1141-52. PubMed ID: 15191303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal optimization using whale optimization algorithm enhanced with local search and niching technique.
    Li H; Zou P; Huang ZG; Zeng CB; Liu X
    Math Biosci Eng; 2019 Sep; 17(1):1-27. PubMed ID: 31731337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantization avoids saddle points in distributed optimization.
    Bo Y; Wang Y
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2319625121. PubMed ID: 38640343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary optimization framework to train multilayer perceptrons for engineering applications.
    Al-Hajj R; Fouad MM; Zeki M
    Math Biosci Eng; 2024 Jan; 21(2):2970-2990. PubMed ID: 38454715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak-Łojasiewicz Condition.
    Xu L; Yi X; Deng C; Shi Y; Chai T; Yang T
    IEEE Trans Cybern; 2024 Oct; 54(10):5746-5758. PubMed ID: 38630570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Enhanced Tree-Seed Algorithm for Function Optimization and Production Optimization.
    Zhou Q; Dai R; Zhou G; Ma S; Luo S
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks.
    Yang S; Tian Y; He C; Zhang X; Tan KC; Jin Y
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4861-4875. PubMed ID: 33661739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.