These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38620011)
1. BnaABF3 and BnaMYB44 regulate the transcription of zeaxanthin epoxidase genes in carotenoid and abscisic acid biosynthesis. Ye S; Huang Y; Ma T; Ma X; Li R; Shen J; Wen J Plant Physiol; 2024 Jun; 195(3):2372-2388. PubMed ID: 38620011 [TBL] [Abstract][Full Text] [Related]
2. Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers. Liu Y; Ye S; Yuan G; Ma X; Heng S; Yi B; Ma C; Shen J; Tu J; Fu T; Wen J Plant J; 2020 Nov; 104(4):932-949. PubMed ID: 32808386 [TBL] [Abstract][Full Text] [Related]
3. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids. Schwarz N; Armbruster U; Iven T; Brückle L; Melzer M; Feussner I; Jahns P Plant Cell Physiol; 2015 Feb; 56(2):346-57. PubMed ID: 25416291 [TBL] [Abstract][Full Text] [Related]
4. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Thompson AJ; Jackson AC; Parker RA; Morpeth DR; Burbidge A; Taylor IB Plant Mol Biol; 2000 Apr; 42(6):833-45. PubMed ID: 10890531 [TBL] [Abstract][Full Text] [Related]
5. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress. Babula-Skowrońska D; Ludwików A; Cieśla A; Olejnik A; Cegielska-Taras T; Bartkowiak-Broda I; Sadowski J Plant Mol Biol; 2015 Jul; 88(4-5):445-57. PubMed ID: 26059040 [TBL] [Abstract][Full Text] [Related]
6. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds. Frey A; Boutin JP; Sotta B; Mercier R; Marion-Poll A Planta; 2006 Aug; 224(3):622-32. PubMed ID: 16482436 [TBL] [Abstract][Full Text] [Related]
7. Expression pattern of candidate genes and their correlation with various metabolites of abscisic acid biosynthetic pathway under drought stress in rice. Changan SS; Kumar V; Tyagi A Physiol Plant; 2023; 175(6):e14102. PubMed ID: 38148246 [TBL] [Abstract][Full Text] [Related]
8. An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Jia KP; Mi J; Ali S; Ohyanagi H; Moreno JC; Ablazov A; Balakrishna A; Berqdar L; Fiore A; Diretto G; Martínez C; de Lera AR; Gojobori T; Al-Babili S Mol Plant; 2022 Jan; 15(1):151-166. PubMed ID: 34547513 [TBL] [Abstract][Full Text] [Related]
9. Rapeseed PP2C37 Interacts with PYR/PYL Abscisic Acid Receptors and Negatively Regulates Drought Tolerance. Zhai Z; Ao Q; Yang L; Lu F; Cheng H; Fang Q; Li C; Chen Q; Yan J; Wei Y; Jiang YQ; Yang B J Agric Food Chem; 2024 Jun; 72(22):12445-12458. PubMed ID: 38771652 [TBL] [Abstract][Full Text] [Related]
10. N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit. Borel C; Audran C; Frey A; Marion-Poll A; Tardieu F; Simonneau T J Exp Bot; 2001 Mar; 52(Spec Issue):427-34. PubMed ID: 11326049 [TBL] [Abstract][Full Text] [Related]
11. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers. Ye S; Hua S; Ma T; Ma X; Chen Y; Wu L; Zhao L; Yi B; Ma C; Tu J; Shen J; Fu T; Wen J J Exp Bot; 2022 Nov; 73(19):6630-6645. PubMed ID: 35857343 [TBL] [Abstract][Full Text] [Related]
12. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Zhang Z; Wang Y; Chang L; Zhang T; An J; Liu Y; Cao Y; Zhao X; Sha X; Hu T; Yang P Plant Cell Rep; 2016 Feb; 35(2):439-53. PubMed ID: 26573680 [TBL] [Abstract][Full Text] [Related]
13. Leaky mutations in the zeaxanthin epoxidase in Capsicum annuum result in bright-red fruit containing a high amount of zeaxanthin. Lee SY; Jang SJ; Jeong HB; Lee JH; Kim GW; Venkatesh J; Back S; Kwon JK; Choi DM; Kim JI; Kim GJ; Kang BC Plant J; 2024 Apr; 118(2):469-487. PubMed ID: 38180307 [TBL] [Abstract][Full Text] [Related]
14. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. Dautermann O; Lohr M Plant J; 2017 Dec; 92(5):879-891. PubMed ID: 28949044 [TBL] [Abstract][Full Text] [Related]
15. A mutation in Zeaxanthin epoxidase contributes to orange coloration and alters carotenoid contents in pepper fruit (Capsicum annuum). Lee SY; Jang SJ; Jeong HB; Lee SY; Venkatesh J; Lee JH; Kwon JK; Kang BC Plant J; 2021 Jun; 106(6):1692-1707. PubMed ID: 33825226 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Yu B; Lydiate DJ; Young LW; Schäfer UA; Hannoufa A Transgenic Res; 2008 Aug; 17(4):573-85. PubMed ID: 17851775 [TBL] [Abstract][Full Text] [Related]
17. Expression of carotenoid biosynthesis genes during carrot root development. Clotault J; Peltier D; Berruyer R; Thomas M; Briard M; Geoffriau E J Exp Bot; 2008; 59(13):3563-73. PubMed ID: 18757491 [TBL] [Abstract][Full Text] [Related]
18. Calcium-dependent Protein Kinase 5 (CPK5) positively modulates drought tolerance through phosphorylating ABA-Responsive Element Binding Factors in oilseed rape (Brassica napus L.). Cheng H; Pan G; Zhou N; Zhai Z; Yang L; Zhu H; Cui X; Zhao P; Zhang H; Li S; Yang B; Jiang YQ Plant Sci; 2022 Feb; 315():111125. PubMed ID: 35067297 [TBL] [Abstract][Full Text] [Related]
19. The transcriptional regulatory module CsHB5-CsbZIP44 positively regulates abscisic acid-mediated carotenoid biosynthesis in citrus (Citrus spp.). Sun Q; He Z; Wei R; Zhang Y; Ye J; Chai L; Xie Z; Guo W; Xu J; Cheng Y; Xu Q; Deng X Plant Biotechnol J; 2024 Mar; 22(3):722-737. PubMed ID: 37915111 [TBL] [Abstract][Full Text] [Related]
20. Epoxycarotenoid-mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryophytes. Takezawa D; Watanabe N; Ghosh TK; Saruhashi M; Suzuki A; Ishiyama K; Somemiya S; Kobayashi M; Sakata Y New Phytol; 2015 Apr; 206(1):209-219. PubMed ID: 25545104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]