These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38621015)

  • 41. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
    Garud KS; Jeong S; Lee MY
    Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pulsatile flow of non-Newtonian fluid in distensible models of human arteries.
    Liepsch D; Moravec S
    Biorheology; 1984; 21(4):571-86. PubMed ID: 6487768
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE
    Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of non-Newtonian viscoelasticity and wall elasticity on flow at a 90 degrees bifurcation.
    Ku DN; Liepsch D
    Biorheology; 1986; 23(4):359-70. PubMed ID: 3779061
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of arterial wall-stenosis compliance on the coronary diagnostic parameters.
    Konala BC; Das A; Banerjee RK
    J Biomech; 2011 Mar; 44(5):842-7. PubMed ID: 21215971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.
    Weddell JC; Kwack J; Imoukhuede PI; Masud A
    PLoS One; 2015; 10(4):e0124575. PubMed ID: 25897758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modelling of flow and wall behaviour in a mildly stenosed tube.
    Lee KW; Xu XY
    Med Eng Phys; 2002 Nov; 24(9):575-86. PubMed ID: 12376044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical study of unsteady stenosis flow: parametric evaluation of power-law model.
    Ng EY; Siauw WL; Goh WE
    J Med Eng Technol; 2000; 24(5):203-9. PubMed ID: 11204243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A proof-of-concept study for the simulation of blood flow in a post arterial segment for different blood rheology models.
    Karanasiou GE; Loukas VS; Tsompou PI; Karanasiou GS; Kyriakidis S; Antonini L; Poletti G; Pennati G; Papafaklis M; Gergidis LN; Fotiadis DI; Sakellarios AI
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3985-3988. PubMed ID: 36086124
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of elastic property of the wall on flow characteristics through arterial stenoses.
    Moayeri MS; Zendehbudi GR
    J Biomech; 2003 Apr; 36(4):525-35. PubMed ID: 12600343
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non-newtonian fluid flow through three-dimensional disordered porous media.
    Morais AF; Seybold H; Herrmann HJ; Andrade JS
    Phys Rev Lett; 2009 Nov; 103(19):194502. PubMed ID: 20365926
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flow investigations in a model of a three-dimensional human artery with Newtonian and non-Newtonian fluids. Part I.
    Moravec S; Liepsch D
    Biorheology; 1983; 20(6):745-59. PubMed ID: 6661526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pulmonary airway reopening: effects of non-Newtonian fluid viscosity.
    Low HT; Chew YT; Zhou CW
    J Biomech Eng; 1997 Aug; 119(3):298-308. PubMed ID: 9285343
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computer modeling of pulsatile blood flow in elastic artery using a software program for application in biomedical engineering.
    Sharifzadeh B; Kalbasi R; Jahangiri M; Toghraie D; Karimipour A
    Comput Methods Programs Biomed; 2020 Aug; 192():105442. PubMed ID: 32192998
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Numerical simulation of blood flow inside an artery under applying constant heat flux using Newtonian and non-Newtonian approaches for biomedical engineering.
    Foong LK; Shirani N; Toghraie D; Zarringhalam M; Afrand M
    Comput Methods Programs Biomed; 2020 Jul; 190():105375. PubMed ID: 32036202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulation of pulsatile flow of blood in stenosed coronary artery bypass with graft.
    Wiwatanapataphee B; Poltem D; Wu YH; Lenbury Y
    Math Biosci Eng; 2006 Apr; 3(2):371-83. PubMed ID: 20361829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical Simulation of Nonlinear Pulsatile Newtonian Blood Flow through a Multiple Stenosed Artery.
    Changdar S; De S
    Int Sch Res Notices; 2015; 2015():628605. PubMed ID: 27347534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.