These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38621088)

  • 1. Imaging focused laser differential interferometry.
    Marsh AW; Kramer AN; Maranto KN; Chen Mazumdar Y
    Opt Lett; 2024 Apr; 49(8):2109-2112. PubMed ID: 38621088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of supersonic jet screech with focused laser differential interferometry.
    Price TJ; Gragston M; Schmisseur JD; Kreth PA
    Appl Opt; 2020 Oct; 59(28):8902-8908. PubMed ID: 33104576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative focused laser differential interferometry with hypersonic turbulent boundary layers.
    Benitez EK; Borg MP; Luke Hill J; Aultman MT; Duan L; Running CL; Jewell JS
    Appl Opt; 2022 Nov; 61(31):9203-9216. PubMed ID: 36607055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable focused laser differential interferometer with a spatial light modulator as a dynamic diffractive optical element.
    Holladay S; Zhang Z
    Opt Lett; 2023 Oct; 48(19):5001-5004. PubMed ID: 37773370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-point line focused laser differential interferometer for high-speed flow fluctuation measurements.
    Weisberger JM; Bathel BF; Herring GC; Buck GM; Jones SB; Cavone AA
    Appl Opt; 2020 Dec; 59(35):11180-11195. PubMed ID: 33361947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear array focused-laser differential interferometry for single-shot multi-point flow disturbance measurements.
    Gragston M; Price T; Davenport K; Zhang Z; Schmisseur JD
    Opt Lett; 2021 Jan; 46(1):154-157. PubMed ID: 33362039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in high-speed laser diagnostics for hypersonic flows [Invited].
    Jiang N; Hsu PS; Gragston M; Roy S
    Appl Opt; 2023 Feb; 62(6):A59-A75. PubMed ID: 36821300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovering density disturbance spectra from FLDI. Part 1.
    Lawson JM; Austin JM
    Appl Opt; 2023 Apr; 62(12):3042-3053. PubMed ID: 37133150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-depth focused laser differential interferometer based on chromatic aberration.
    Webber N; Constantin R; Edwards S; Gragston M
    Appl Opt; 2024 Feb; 63(5):1196-1203. PubMed ID: 38437297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focused laser differential interferometry post-processing methodology for flowfields with circular symmetry.
    Camillo GP; Wagner A
    Rev Sci Instrum; 2023 Apr; 94(4):. PubMed ID: 38081270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colinear focused laser differential interferometry and self-aligned focusing schlieren.
    Weisberger JM; Bathel BF
    Appl Opt; 2023 Jun; 62(18):4958-4970. PubMed ID: 37707274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovering density disturbance spectra from FLDI. Part 2: comparisons with previous methods.
    Lawson JM; Austin JM
    Appl Opt; 2023 Apr; 62(12):3054-3061. PubMed ID: 37133151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency tuning in the rat whisker barrel cortex revealed through RBC flux maps.
    Kannurpatti SS; Biswal BB
    Brain Res; 2011 Oct; 1417():16-26. PubMed ID: 21911212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and characterization of supersonic nozzles for wide focus laser-plasma interactions.
    Lemos N; Lopes N; Dias JM; Viola F
    Rev Sci Instrum; 2009 Oct; 80(10):103301. PubMed ID: 19895054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of focused laser differential interferometry.
    Schmidt BE; Shepherd JE
    Appl Opt; 2015 Oct; 54(28):8459-72. PubMed ID: 26479624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-point, parallel-beam focused laser differential interferometry with a Nomarski prism.
    Bathel BF; Weisberger JM; Herring GC; King RA; Jones SB; Kennedy RE; Laurence SJ
    Appl Opt; 2020 Jan; 59(2):244-252. PubMed ID: 32225301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.
    Canagasabey A; Michie A; Canning J; Holdsworth J; Fleming S; Wang HC; Aslund ML
    Sensors (Basel); 2011; 11(10):9233-41. PubMed ID: 22163692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highspeed multiplexed heterodyne interferometry.
    Isleif KS; Gerberding O; Köhlenbeck S; Sutton A; Sheard B; Goßler S; Shaddock D; Heinzel G; Danzmann K
    Opt Express; 2014 Oct; 22(20):24689-96. PubMed ID: 25322043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supersonic jet noise source distributions.
    Breen NP; Ahuja KK
    J Acoust Soc Am; 2021 Sep; 150(3):2193. PubMed ID: 34598607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators.
    Endo M; Shoji TD; Schibli TR
    Sci Rep; 2018 Mar; 8(1):4388. PubMed ID: 29531338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.