BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 38621120)

  • 1. Lipid scrambling is a general feature of protein insertases.
    Li D; Rocha-Roa C; Schilling MA; Reinisch KM; Vanni S
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2319476121. PubMed ID: 38621120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid scrambling is a general feature of protein insertases.
    Li D; Rocha-Roa C; Schilling MA; Reinisch KM; Vanni S
    bioRxiv; 2023 Sep; ():. PubMed ID: 37693532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TMEM16 scramblases thin the membrane to enable lipid scrambling.
    Falzone ME; Feng Z; Alvarenga OE; Pan Y; Lee B; Cheng X; Fortea E; Scheuring S; Accardi A
    Nat Commun; 2022 May; 13(1):2604. PubMed ID: 35562175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insertases scramble lipids: Molecular simulations of MTCH2.
    Bartoš L; Menon AK; Vácha R
    Structure; 2024 Apr; 32(4):505-510.e4. PubMed ID: 38377988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis.
    Ghanbarpour A; Valverde DP; Melia TJ; Reinisch KM
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of lipid scramblases in regulating lipid distributions at cellular membranes.
    Wang Y; Kinoshita T
    Biochem Soc Trans; 2023 Oct; 51(5):1857-1869. PubMed ID: 37767549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insertases Scramble Lipids: Molecular Simulations of MTCH2.
    Bartoš L; Menon AK; Vácha R
    bioRxiv; 2023 Dec; ():. PubMed ID: 37645813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic insight into lipid translocation by a TMEM16 scramblase.
    Bethel NP; Grabe M
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14049-14054. PubMed ID: 27872308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Feature of Lipid Scrambling Model Transmembrane Peptides: Same-Side Positioning of Hydrophilic Residues and Their Deeper Position.
    Nakao H; Sugimoto Y; Ikeda K; Saito H; Nakano M
    J Phys Chem Lett; 2020 Mar; 11(5):1662-1667. PubMed ID: 32058725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flip-Flop Promotion Mechanisms by Model Transmembrane Peptides.
    Nakao H; Nakano M
    Chem Pharm Bull (Tokyo); 2022; 70(8):519-523. PubMed ID: 35908916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes.
    Contreras FX; Sánchez-Magraner L; Alonso A; Goñi FM
    FEBS Lett; 2010 May; 584(9):1779-86. PubMed ID: 20043909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane insertases at a glance.
    Kizmaz B; Herrmann JM
    J Cell Sci; 2023 Jul; 136(13):. PubMed ID: 37417332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In or out of the groove? Mechanisms of lipid scrambling by TMEM16 proteins.
    Feng Z; Di Zanni E; Alvarenga O; Chakraborty S; Rychlik N; Accardi A
    Cell Calcium; 2024 Jul; 121():102896. PubMed ID: 38749289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common evolutionary origin reveals fundamental principles of protein insertases.
    Vögtle FN; Koch HG; Meisinger C
    PLoS Biol; 2022 Mar; 20(3):e3001558. PubMed ID: 35235553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing properties of translocation-enhancing transmembrane proteins.
    Bartoš L; Drabinová M; Vácha R
    Biophys J; 2024 May; 123(10):1240-1252. PubMed ID: 38615194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid Scrambling by G Protein-Coupled Receptors.
    Khelashvili G; Menon AK
    Annu Rev Biophys; 2022 May; 51():39-61. PubMed ID: 34932914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.
    Rebaud S; Maniti O; Girard-Egrot AP
    Biochimie; 2014 Dec; 107 Pt A():135-42. PubMed ID: 24998327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Yeast Organelle Membranes and How Lipid Diversity Influences Bilayer Properties.
    Monje-Galvan V; Klauda JB
    Biochemistry; 2015 Nov; 54(45):6852-61. PubMed ID: 26497753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.