These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38621127)

  • 1. Toward vanishing droplet friction on repellent surfaces.
    Backholm M; Kärki T; Nurmi HA; Vuckovac M; Turkki V; Lepikko S; Jokinen V; Quéré D; Timonen JVI; Ras RHA
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2315214121. PubMed ID: 38621127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscosity-enhanced droplet motion in sealed superhydrophobic capillaries.
    Vuckovac M; Backholm M; Timonen JVI; Ras RHA
    Sci Adv; 2020 Oct; 6(42):. PubMed ID: 33067224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water drop friction on superhydrophobic surfaces.
    Olin P; Lindström SB; Pettersson T; Wågberg L
    Langmuir; 2013 Jul; 29(29):9079-89. PubMed ID: 23721176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces.
    Al-Azawi A; Latikka M; Jokinen V; Franssila S; Ras RHA
    Small; 2017 Oct; 13(38):. PubMed ID: 28815888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces.
    Lee E; Müller-Plathe F
    J Chem Phys; 2022 Jul; 157(2):024701. PubMed ID: 35840373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friction force-based measurements for simultaneous determination of the wetting properties and stability of superhydrophobic surfaces.
    Beitollahpoor M; Farzam M; Pesika NS
    J Colloid Interface Sci; 2023 Oct; 648():161-168. PubMed ID: 37301141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic frictions.
    Mouterde T; Raux PS; Clanet C; Quéré D
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8220-8223. PubMed ID: 30952789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lotus Effect and Friction: Does Nonsticky Mean Slippery?
    Hasan MS; Nosonovsky M
    Biomimetics (Basel); 2020 Jun; 5(2):. PubMed ID: 32545628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact-Angle Hysteresis and Contact-Line Friction on Slippery Liquid-like Surfaces.
    Barrio-Zhang H; Ruiz-Gutiérrez É; Armstrong S; McHale G; Wells GG; Ledesma-Aguilar R
    Langmuir; 2020 Dec; 36(49):15094-15101. PubMed ID: 33258609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the Sliding Angle of Water Drops on Surfaces from Friction Force Measurements.
    Beitollahpoor M; Farzam M; Pesika NS
    Langmuir; 2022 Feb; 38(6):2132-2136. PubMed ID: 35104147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Friction Coefficients for Droplets on Solids: The Liquid-Solid Amontons' Laws.
    McHale G; Gao N; Wells GG; Barrio-Zhang H; Ledesma-Aguilar R
    Langmuir; 2022 Apr; 38(14):4425-4433. PubMed ID: 35353534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention.
    Ditsche-Kuru P; Schneider ES; Melskotte JE; Brede M; Leder A; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():137-44. PubMed ID: 21977425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional Manipulation of Drops and Solids on a Magneto-Responsive Slippery Surface.
    Banerjee U; Gunjan MR; Mitra SK
    Langmuir; 2024 Feb; 40(6):3105-3116. PubMed ID: 38306611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Charge Transfer Modulated Static Friction Resistance of Water Drops.
    Hu T; Wang X; Sheng H; Chen X; Tan J; Fang S; Deng W; Li X; Yin J; Guo W
    Langmuir; 2023 Jul; 39(26):9246-9252. PubMed ID: 37352469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Droplets Impacting on Aerogel, Liquid Infused, and Liquid-Like Solid Surfaces.
    Dawson J; Coaster S; Han R; Gausden J; Liu H; McHale G; Chen J
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2301-2312. PubMed ID: 36580541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet Mobility on Slippery Lubricant Impregnated and Superhydrophobic Surfaces under the Effect of Air Shear Flow.
    Yeganehdoust F; Amer A; Sharifi N; Karimfazli I; Dolatabadi A
    Langmuir; 2021 May; 37(20):6278-6291. PubMed ID: 33978432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force-Based Wetting Characterization of Stochastic Superhydrophobic Coatings at Nanonewton Sensitivity.
    Hokkanen MJ; Backholm M; Vuckovac M; Zhou Q; Ras RHA
    Adv Mater; 2021 Oct; 33(42):e2105130. PubMed ID: 34469006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.