BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38621315)

  • 1. Surface wettability control and electron transport regulation in zerovalent iron for enhanced removal of emerging polystyrene microplastics-heavy metal contaminants.
    Zhang Y; Fu H; Chen X; Shi S; Liu N; Tang C; Hu X
    Water Res; 2024 Jun; 256():121602. PubMed ID: 38621315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration.
    Zhang Y; Su Y; Zhou X; Dai C; Keller AA
    J Hazard Mater; 2013 Dec; 263 Pt 2():685-93. PubMed ID: 24231326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal remediation by nano zero-valent iron in the presence of microplastics in groundwater: Inhibition and induced promotion on aging effects.
    Luo Z; Zhu J; Yu L; Yin K
    Environ Pollut; 2021 Oct; 287():117628. PubMed ID: 34167000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.
    Huang P; Ye Z; Xie W; Chen Q; Li J; Xu Z; Yao M
    Water Res; 2013 Aug; 47(12):4050-8. PubMed ID: 23566331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal performance of zero-valent iron towards heavy metal ions by assembling Fe-tannin coating.
    Feng J; Lang G; Li T; Zhang J; Li T; Jiang Z
    J Environ Manage; 2022 Oct; 319():115619. PubMed ID: 35810583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presence of polystyrene microplastics in Cd contaminated water promotes Cd removal by nano zero-valent iron and ryegrass (Lolium Perenne L.).
    Huang D; Zhou W; Chen S; Tao J; Li R; Yin L; Wang X; Chen H
    Chemosphere; 2022 Sep; 303(Pt 1):134729. PubMed ID: 35525445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption behavior of UV aged microplastics on the heavy metals Pb(II) and Cu(II) in aqueous solutions.
    Wang L; Guo C; Qian Q; Lang D; Wu R; Abliz S; Wang W; Wang J
    Chemosphere; 2023 Feb; 313():137439. PubMed ID: 36460154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of illite/iron nanoparticles and their application as an adsorbent of lead ions.
    Cai X; Yu X; Yu X; Wu Z; Li S; Yu C
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29449-29459. PubMed ID: 31401799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of heavy metal ions and polybrominated biphenyl ethers by sulfurized nanoscale zerovalent iron: Compound effects and removal mechanism.
    Wei X; Guo Z; Yin H; Yuan Y; Chen R; Lu G; Dang Z
    J Hazard Mater; 2021 Jul; 414():125555. PubMed ID: 33684814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron.
    Xu W; Hu X; Lou Y; Jiang X; Shi K; Tong Y; Xu X; Shen C; Hu B; Lou L
    Environ Res; 2020 Aug; 187():109662. PubMed ID: 32460094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of kinetics and mechanisms for Pb(II) sorption onto three kinds of microplastics.
    Lin Z; Hu Y; Yuan Y; Hu B; Wang B
    Ecotoxicol Environ Saf; 2021 Jan; 208():111451. PubMed ID: 33068974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal.
    Su Y; Adeleye AS; Keller AA; Huang Y; Dai C; Zhou X; Zhang Y
    Water Res; 2015 May; 74():47-57. PubMed ID: 25706223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of sulfidated nanoscale zerovalent iron for in-situ remediation of cadmium-contaminated acidic groundwater at a zinc smelter.
    Song IG; Kang YG; Kim JH; Yoon H; Um WY; Chang YS
    J Hazard Mater; 2023 Jan; 441():129915. PubMed ID: 36113350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexabromocyclododecane alters malachite green and lead(II) adsorption behaviors onto polystyrene microplastics: Interaction mechanism and competitive effect.
    Lin L; Tang S; Wang X; Sun X; Yu A
    Chemosphere; 2021 Feb; 265():129079. PubMed ID: 33288280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kirkendall Effect Boosts Phosphorylated nZVI for Efficient Heavy Metal Wastewater Treatment.
    Li M; Shang H; Li H; Hong Y; Ling C; Wei K; Zhou B; Mao C; Ai Z; Zhang L
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):17115-17122. PubMed ID: 33991384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.
    Liu T; Yang X; Wang ZL; Yan X
    Water Res; 2013 Nov; 47(17):6691-700. PubMed ID: 24075723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).
    Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D
    Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.
    Sun Y; Lei C; Khan E; Chen SS; Tsang DCW; Ok YS; Lin D; Feng Y; Li XD
    Chemosphere; 2017 Jun; 176():315-323. PubMed ID: 28273539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions.
    Gil A; Amiri MJ; Abedi-Koupai J; Eslamian S
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2814-2829. PubMed ID: 29143259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron.
    Lv D; Zhou J; Cao Z; Xu J; Liu Y; Li Y; Yang K; Lou Z; Lou L; Xu X
    Chemosphere; 2019 Jun; 224():306-315. PubMed ID: 30844587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.