These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38621389)

  • 1. Leaf unfolding and lamina biomechanics in
    Modert M; Speck T; Masselter T
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38621389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomy and Biomechanics of Peltate
    Rjosk A; Neinhuis C; Lautenschläger T
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation to wind loads and/or contact stimuli? A biomechanical study of peltate leaves of Pilea peperomioides.
    Langer M; Hegge E; Speck T; Speck O
    J Exp Bot; 2022 Feb; 73(4):1236-1252. PubMed ID: 34893822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species.
    Kitajima K; Poorter L
    New Phytol; 2010 May; 186(3):708-21. PubMed ID: 20298481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach.
    Onoda Y; Schieving F; Anten NP
    Ann Bot; 2008 Apr; 101(5):727-36. PubMed ID: 18272529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves.
    Semiarti E; Ueno Y; Tsukaya H; Iwakawa H; Machida C; Machida Y
    Development; 2001 May; 128(10):1771-83. PubMed ID: 11311158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strengthening Structures in the Petiole-Lamina Junction of Peltate Leaves.
    Wunnenberg J; Rjosk A; Neinhuis C; Lautenschläger T
    Biomimetics (Basel); 2021 Apr; 6(2):. PubMed ID: 33918405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of leaf cuticle for carbon economy and mechanical strength.
    Onoda Y; Richards L; Westoby M
    New Phytol; 2012 Oct; 196(2):441-447. PubMed ID: 22913608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drought tolerance of selected Eragrostis species correlates with leaf tensile properties.
    Balsamo RA; Willigen CV; Bauer AM; Farrant J
    Ann Bot; 2006 Jun; 97(6):985-91. PubMed ID: 16621860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical principles behind the golden ratio distribution of veins in plant leaves.
    Sun Z; Cui T; Zhu Y; Zhang W; Shi S; Tang S; Du Z; Liu C; Cui R; Chen H; Guo X
    Sci Rep; 2018 Sep; 8(1):13859. PubMed ID: 30217990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-ordinated development of the leaf midrib xylem with the lamina in Nicotiana tabacum.
    Taneda H; Terashima I
    Ann Bot; 2012 Jul; 110(1):35-45. PubMed ID: 22589329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abaxial growth and steric constraints guide leaf folding and shape in Acer pseudoplatanus.
    Couturier E; Brunel N; Douady S; Nakayama N
    Am J Bot; 2012 Aug; 99(8):1289-99. PubMed ID: 22875594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in sucrose and ABA concentrations are concomitant with heteroblastic leaf shape changes in a rhythmically growing species (Quercus robur).
    Le Hir R; Leduc N; Jeannette E; Viemont JD; Pelleschi-Travier S
    Tree Physiol; 2006 Feb; 26(2):229-38. PubMed ID: 16356920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species.
    Onoda Y; Schieving F; Anten NP
    J Exp Bot; 2015 May; 66(9):2487-99. PubMed ID: 25675956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lamina-specific localization of silicon accumulation in two broadleaf tree species.
    Kajino H; Kitajima K
    J Plant Res; 2023 Sep; 136(5):659-663. PubMed ID: 37249668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vein Distribution on the Deformation Behavior and Fracture Mechanisms of Typical Plant Leaves by Quasi In Situ Tensile Test under a Digital Microscope.
    Liu J; Ye W; Zhang Z; Yu Z; Ding H; Zhang C; Liu S
    Appl Bionics Biomech; 2020; 2020():8792143. PubMed ID: 32670404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption.
    Sack L; Dietrich EM; Streeter CM; Sánchez-Gómez D; Holbrook NM
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1567-72. PubMed ID: 18227511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Umbrella leaves-Biomechanics of transition zone from lamina to petiole of peltate leaves.
    Sacher M; Lautenschläger T; Kempe A; Neinhuis C
    Bioinspir Biomim; 2019 Jun; 14(4):046011. PubMed ID: 31121570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Petiole-Lamina Transition Zone: A Functionally Crucial but Often Overlooked Leaf Trait.
    Langer M; Speck T; Speck O
    Plants (Basel); 2021 Apr; 10(4):. PubMed ID: 33920846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bulk elastic modulus and the reversible properties of cell walls in developing Quercus leaves.
    Saito T; Soga K; Hoson T; Terashima I
    Plant Cell Physiol; 2006 Jun; 47(6):715-25. PubMed ID: 16571617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.