These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38621389)

  • 21. The bulk elastic modulus and the reversible properties of cell walls in developing Quercus leaves.
    Saito T; Soga K; Hoson T; Terashima I
    Plant Cell Physiol; 2006 Jun; 47(6):715-25. PubMed ID: 16571617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional lamina architecture alters light-harvesting efficiency in Fagus: a leaf-scale analysis.
    Fleck S; Niinemets U; Cescatti A; Tenhunen JD
    Tree Physiol; 2003 Jun; 23(9):577-89. PubMed ID: 12750051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods.
    Enrico L; Díaz S; Westoby M; Rice BL
    Ann Bot; 2016 Jan; 117(1):209-14. PubMed ID: 26530215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a neotropical forest.
    Westbrook JW; Kitajima K; Burleigh JG; Kress WJ; Erickson DL; Wright SJ
    Am Nat; 2011 Jun; 177(6):800-11. PubMed ID: 21597256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ontogenetic transition of leaf physiology and anatomy from seedlings to mature trees of a rain forest pioneer tree, Macaranga gigantea.
    Ishida A; Yazaki K; Hoe AL
    Tree Physiol; 2005 May; 25(5):513-22. PubMed ID: 15741149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Analyses of the Self-Sealing Mechanisms in Leaves of
    Hesse L; Kampowski T; Leupold J; Caliaro S; Speck T; Speck O
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32796721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaf direction: Lamina joint development and environmental responses.
    Xu J; Wang JJ; Xue HW; Zhang GH
    Plant Cell Environ; 2021 Aug; 44(8):2441-2454. PubMed ID: 33866581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global patterns of leaf mechanical properties.
    Onoda Y; Westoby M; Adler PB; Choong AM; Clissold FJ; Cornelissen JH; Díaz S; Dominy NJ; Elgart A; Enrico L; Fine PV; Howard JJ; Jalili A; Kitajima K; Kurokawa H; McArthur C; Lucas PW; Markesteijn L; Pérez-Harguindeguy N; Poorter L; Richards L; Santiago LS; Sosinski EE; Van Bael SA; Warton DI; Wright IJ; Wright SJ; Yamashita N
    Ecol Lett; 2011 Mar; 14(3):301-12. PubMed ID: 21265976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How wind drives the correlation between leaf shape and mechanical properties.
    Louf JF; Nelson L; Kang H; Song PN; Zehnbauer T; Jung S
    Sci Rep; 2018 Nov; 8(1):16314. PubMed ID: 30397247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.
    James SA; Bell DT
    Tree Physiol; 2000 Sep; 20(15):1007-18. PubMed ID: 11305455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the mechanisms of development in monocot and eudicot leaves.
    Conklin PA; Strable J; Li S; Scanlon MJ
    New Phytol; 2019 Jan; 221(2):706-724. PubMed ID: 30106472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative analysis of leaf shape of wheat, barley and maize using an empirical shape model.
    Dornbusch T; Watt J; Baccar R; Fournier C; Andrieu B
    Ann Bot; 2011 Apr; 107(5):865-73. PubMed ID: 20929895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Causes of ecological gradients in leaf margin entirety: Evaluating the roles of biomechanics, hydraulics, vein geometry, and bud packing.
    Givnish TJ; Kriebel R
    Am J Bot; 2017 Mar; 104(3):354-366. PubMed ID: 28232316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Venation pattern formation in Arabidopsis thaliana vegetative leaves.
    Candela H; Martínez-Laborda A; Micol JL
    Dev Biol; 1999 Jan; 205(1):205-16. PubMed ID: 9882508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rheology of a growing leaf: stress-induced changes in the mechanical properties of leaves.
    Sahaf M; Sharon E
    J Exp Bot; 2016 Oct; 67(18):5509-5515. PubMed ID: 27651350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological, structural and physiological differences in heteromorphic leaves of Euphrates poplar during development stages and at crown scales.
    Zhai JT; Li YL; Han ZJ; Li ZJ
    Plant Biol (Stuttg); 2020 May; 22(3):366-375. PubMed ID: 31793152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.
    Meng F; Cao R; Yang D; Niklas KJ; Sun S
    Tree Physiol; 2013 Jul; 33(7):753-62. PubMed ID: 23933830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mathematical treatment of leaf venation: the variation in secondary vein length along the midrib.
    Burton RF
    Ann Bot; 2004 Feb; 93(2):149-56. PubMed ID: 14707000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compartmental distribution and redistribution of abscisic acid in intact leaves : II. Model analysis.
    Slovik S; Hartung W
    Planta; 1992 Apr; 187(1):26-36. PubMed ID: 24177963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmentally based scaling of leaf venation architecture explains global ecological patterns.
    Sack L; Scoffoni C; McKown AD; Frole K; Rawls M; Havran JC; Tran H; Tran T
    Nat Commun; 2012 May; 3():837. PubMed ID: 22588299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.