These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 38621536)
1. Unveiling key mechanisms: Transcriptomic meta-analysis of diverse nanomaterial applications addressing biotic and abiotic stresses in Arabidopsis Thaliana. Wu Y; Wang Y; Liu X; Zhang C Sci Total Environ; 2024 Jun; 928():172476. PubMed ID: 38621536 [TBL] [Abstract][Full Text] [Related]
2. Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. Shelar A; Singh AV; Chaure N; Jagtap P; Chaudhari P; Shinde M; Nile SH; Chaskar M; Patil R Sci Total Environ; 2024 Nov; 951():175118. PubMed ID: 39097019 [TBL] [Abstract][Full Text] [Related]
3. Meta-Analysis of Common and Differential Transcriptomic Responses to Biotic and Abiotic Stresses in Biniaz Y; Tahmasebi A; Afsharifar A; Tahmasebi A; Poczai P Plants (Basel); 2022 Feb; 11(4):. PubMed ID: 35214836 [TBL] [Abstract][Full Text] [Related]
4. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays. Sham A; Moustafa K; Al-Ameri S; Al-Azzawi A; Iratni R; AbuQamar S PLoS One; 2015; 10(5):e0125666. PubMed ID: 25933420 [TBL] [Abstract][Full Text] [Related]
6. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Atkinson NJ; Lilley CJ; Urwin PE Plant Physiol; 2013 Aug; 162(4):2028-41. PubMed ID: 23800991 [TBL] [Abstract][Full Text] [Related]
7. Meta-analysis to Unravel Core Transcriptomic Responses in Penaeus vannamei Exposed to Biotic and Abiotic Stresses. Palliyath GK; Jangam AK; Katneni VK; Kaikkolante N; Panjan Nathamuni S; Jayaraman R; Jagabattula S; Moturi M; Shekhar MS Biochem Genet; 2024 Apr; ():. PubMed ID: 38570440 [TBL] [Abstract][Full Text] [Related]
8. ROSMETER: a bioinformatic tool for the identification of transcriptomic imprints related to reactive oxygen species type and origin provides new insights into stress responses. Rosenwasser S; Fluhr R; Joshi JR; Leviatan N; Sela N; Hetzroni A; Friedman H Plant Physiol; 2013 Oct; 163(2):1071-83. PubMed ID: 23922270 [TBL] [Abstract][Full Text] [Related]
9. Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics. Naika M; Shameer K; Sowdhamini R Mol Biosyst; 2013 Jul; 9(7):1888-908. PubMed ID: 23645342 [TBL] [Abstract][Full Text] [Related]
10. Strategies for Enhancing Plant Immunity and Resilience Using Nanomaterials for Sustainable Agriculture. Zhang P; Jiang Y; Schwab F; Monikh FA; Grillo R; White JC; Guo Z; Lynch I Environ Sci Technol; 2024 May; 58(21):9051-9060. PubMed ID: 38742946 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Coolen S; Proietti S; Hickman R; Davila Olivas NH; Huang PP; Van Verk MC; Van Pelt JA; Wittenberg AH; De Vos M; Prins M; Van Loon JJ; Aarts MG; Dicke M; Pieterse CM; Van Wees SC Plant J; 2016 May; 86(3):249-67. PubMed ID: 26991768 [TBL] [Abstract][Full Text] [Related]
12. Nanoparticle-mediated defense priming: A review of strategies for enhancing plant resilience against biotic and abiotic stresses. Yadav N; Bora S; Devi B; Upadhyay C; Singh P Plant Physiol Biochem; 2024 Aug; 213():108796. PubMed ID: 38901229 [TBL] [Abstract][Full Text] [Related]
13. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence. Nejat N; Mantri N Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243 [TBL] [Abstract][Full Text] [Related]
14. In silico characterization, molecular phylogeny, and expression profiling of genes encoding legume lectin-like proteins under various abiotic stresses in Arabidopsis thaliana. Biswas S; Mondal R; Srivastava A; Trivedi M; Singh SK; Mishra Y BMC Genomics; 2022 Jun; 23(1):480. PubMed ID: 35768782 [TBL] [Abstract][Full Text] [Related]
15. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Cao M; Narayanan M; Shi X; Chen X; Li Z; Ma Y Environ Res; 2023 Jan; 217():114924. PubMed ID: 36471556 [TBL] [Abstract][Full Text] [Related]
16. Nanomaterials for Agricultural and Ecological Defense Applications: Active Agents and Sensors. Sharma P; Kumar S; Patel A; Datta B; DeLong RK Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Sep; 13(5):e1713. PubMed ID: 33749154 [TBL] [Abstract][Full Text] [Related]
17. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. Nakai Y; Nakahira Y; Sumida H; Takebayashi K; Nagasawa Y; Yamasaki K; Akiyama M; Ohme-Takagi M; Fujiwara S; Shiina T; Mitsuda N; Fukusaki E; Kubo Y; Sato MH Plant J; 2013 Mar; 73(5):761-75. PubMed ID: 23167462 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms. Ramu VS; Paramanantham A; Ramegowda V; Mohan-Raju B; Udayakumar M; Senthil-Kumar M PLoS One; 2016; 11(6):e0157522. PubMed ID: 27314499 [TBL] [Abstract][Full Text] [Related]
19. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Berens ML; Wolinska KW; Spaepen S; Ziegler J; Nobori T; Nair A; Krüler V; Winkelmüller TM; Wang Y; Mine A; Becker D; Garrido-Oter R; Schulze-Lefert P; Tsuda K Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2364-2373. PubMed ID: 30674663 [TBL] [Abstract][Full Text] [Related]
20. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Phour M; Sindhu SS Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]