These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38621557)

  • 1. Structures and interactions forming stable shellac-casein nanocomplexes with a pH-cycle.
    Wang A; Lenaghan SC; Zhong Q
    Int J Biol Macromol; 2024 May; 267(Pt 2):131585. PubMed ID: 38621557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable casein micelle dispersions at pH 4.5 enabled by propylene glycol alginate following a pH-cycle treatment.
    Li N; Zhong Q
    Carbohydr Polym; 2020 Apr; 233():115834. PubMed ID: 32059887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction Mechanism of Different Surfactants with Casein: A Perspective on Bulk and Interfacial Phase Behavior.
    Tian Q; Lai L; Zhou Z; Mei P; Lu Q; Wang Y; Xiang D; Liu Y
    J Agric Food Chem; 2019 Jun; 67(22):6336-6349. PubMed ID: 31117492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pressure-induced, lactose-dependent changes in the composition and size of casein micelles.
    Wang P; Jin S; Guo H; Zhao L; Ren F
    Food Chem; 2015 Apr; 173():468-74. PubMed ID: 25466047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-dependent structures and properties of casein micelles.
    Liu Y; Guo R
    Biophys Chem; 2008 Aug; 136(2-3):67-73. PubMed ID: 18583019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shellac Micelles Loaded with Curcumin Using a pH Cycle to Improve Dispersibility, Bioaccessibility, and Potential for Colon Delivery.
    Wang A; Jain S; Dia V; Lenaghan SC; Zhong Q
    J Agric Food Chem; 2022 Dec; 70(48):15166-15177. PubMed ID: 36398904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of beta-casein and lysozyme.
    Pan X; Yu S; Yao P; Shao Z
    J Colloid Interface Sci; 2007 Dec; 316(2):405-12. PubMed ID: 17915243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Casein micelles and their internal structure.
    de Kruif CG; Huppertz T; Urban VS; Petukhov AV
    Adv Colloid Interface Sci; 2012; 171-172():36-52. PubMed ID: 22381008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of high pressure--low temperature treatments on structural characteristics of whey proteins and micellar caseins.
    Baier D; Purschke B; Schmitt C; Rawel HM; Knorr D
    Food Chem; 2015 Nov; 187():354-63. PubMed ID: 25977037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Energetic Studies on the Interaction of Cationic Surfactants and Cellulose Nanocrystals.
    Brinatti C; Huang J; Berry RM; Tam KC; Loh W
    Langmuir; 2016 Jan; 32(3):689-98. PubMed ID: 26731488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of cationic surfactant on the self-assembly of sodium caseinate.
    Vinceković M; Curlin M; Jurašin D
    J Agric Food Chem; 2014 Aug; 62(34):8543-54. PubMed ID: 25078419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pH-dependent dissociation of beta-casein from human milk micelles: role of electrostatic interactions.
    Sood SM; Herbert PJ; Slattery CW
    J Dairy Sci; 1998 Dec; 81(12):3149-53. PubMed ID: 9891262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulation of three different types of polyphenols in casein using a customized pH-driven method: Preparation and characterization.
    Wang X; Chen C; Bao Y; Wang Y; Leonidovna Strakh Y
    Food Res Int; 2024 Aug; 189():114547. PubMed ID: 38876606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of casein-based nanoparticles formed upon freezing by in situ SAXS measurement.
    Nakagawa K; Kagemoto M
    Colloids Surf B Biointerfaces; 2013 Mar; 103():366-74. PubMed ID: 23261557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ultrasound on binding interaction between emodin and micellar casein and its microencapsulation at various temperatures.
    Yang M; Wei Y; Ashokkumar M; Qin J; Han N; Wang Y
    Ultrason Sonochem; 2020 Apr; 62():104861. PubMed ID: 31796325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel details on the dissociation of casein micelle suspensions as a function of pH and temperature.
    M Ller TL; Nielsen SRB; Corredig M
    J Dairy Sci; 2023 Dec; 106(12):8368-8374. PubMed ID: 37678779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between casein and the oppositely charged surfactant.
    Liu Y; Guo R
    Biomacromolecules; 2007 Sep; 8(9):2902-8. PubMed ID: 17696399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible precipitation of casein micelles with a cationic hydroxyethylcellulose.
    Ausar SF; Bianco ID; Castagna LF; Alasino RV; Narambuena CF; Leiva EP; Beltramo DM
    J Agric Food Chem; 2005 Nov; 53(23):9031-8. PubMed ID: 16277399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-mediated disruption of bovine casein micelles at alkaline pH.
    Vaia B; Smiddy MA; Kelly AL; Huppertz T
    J Agric Food Chem; 2006 Oct; 54(21):8288-93. PubMed ID: 17032041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrosorption of pectin onto casein micelles.
    Tuinier R; Rolin C; de Kruif CG
    Biomacromolecules; 2002; 3(3):632-8. PubMed ID: 12005537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.