These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38621571)

  • 1. Micromorphology reformation of regenerated cellulose nanofibers from corn (Zea Mays) stalk pith in urea solution with high-speed shear induced.
    Gao L; Hu Q; Gao X; Tang X; Peng L; Chen K; Zhang H
    Int J Biol Macromol; 2024 May; 267(Pt 2):131592. PubMed ID: 38621571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-cellulose air filter composed with regenerated nanocellulose prepared through a facile method with shear-induced.
    Zhang H; Hu Q; Si T; Tang X; Shan S; Gao X; Peng L; Chen K
    Int J Biol Macromol; 2023 Feb; 228():548-558. PubMed ID: 36423811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved thermal stability of regenerated cellulose films from corn (Zea mays) stalk pith using facile preparation with low-concentration zinc chloride dissolving.
    Zhang H; Chen K; Gao X; Han Q; Peng L
    Carbohydr Polym; 2019 Aug; 217():190-198. PubMed ID: 31079676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fast Dissolution Pretreatment to Produce Strong Regenerated Cellulose Nanofibers via Mechanical Disintegration.
    Sirviö JA; Lakovaara M
    Biomacromolecules; 2021 Aug; 22(8):3366-3376. PubMed ID: 34232615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites.
    Kalaoğlu ÖI; Ünlü CH; Galioğlu Atıcı O
    Carbohydr Polym; 2016 Aug; 147():37-44. PubMed ID: 27178906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of bilayer films from regenerated cellulose nanofibers and poly(globalide) for skin tissue engineering applications.
    Amaral HR; Wilson JA; do Amaral RJFC; Pasçu I; de Oliveira FCS; Kearney CJ; Freitas JCC; Heise A
    Carbohydr Polym; 2021 Jan; 252():117201. PubMed ID: 33183637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced materials from nature: nanocellulose from citrus waste.
    Mariño M; Lopes da Silva L; Durán N; Tasic L
    Molecules; 2015 Apr; 20(4):5908-23. PubMed ID: 25854755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication.
    Xiao S; Gao R; Gao L; Li J
    Carbohydr Polym; 2016 Jan; 136():1027-34. PubMed ID: 26572443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of cellulose nanoparticles from maize stalk pith via ultrasonic-mediated cationic etherification.
    Gu H; Gao X; Zhang H; Chen K; Peng L
    Ultrason Sonochem; 2020 Sep; 66():104932. PubMed ID: 32229080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution.
    Qi H; Cai J; Zhang L; Kuga S
    Biomacromolecules; 2009 Jun; 10(6):1597-602. PubMed ID: 19415903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties.
    Pakutsah K; Aht-Ong D
    Int J Biol Macromol; 2020 Feb; 145():64-76. PubMed ID: 31874270
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Zhou S; Nyholm L; Strømme M; Wang Z
    Acc Chem Res; 2019 Aug; 52(8):2232-2243. PubMed ID: 31290643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of all-cellulose nanocomposites from corn stalk.
    Bian H; Tu P; Chen JY
    J Sci Food Agric; 2020 Sep; 100(12):4390-4399. PubMed ID: 32388869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High yield production of nanocrystalline cellulose from corn cob through a chemical-mechanical treatment under mild conditions.
    Sartika D; Firmansyah AP; Junais I; Arnata IW; Fahma F; Firmanda A
    Int J Biol Macromol; 2023 Jun; 240():124327. PubMed ID: 37015281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors.
    Cao Q; Zhu M; Chen J; Song Y; Li Y; Zhou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1210-1221. PubMed ID: 31845573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films.
    Cheng L; Zhang D; Gu Z; Li Z; Hong Y; Li C
    Int J Biol Macromol; 2018 May; 111():959-966. PubMed ID: 29331537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct dissolution of unbleached pulp from corncob and wheat straw in N-methylmorpholine-N-oxide.
    Li D; Chen Y; Xie Y; Feng Q
    Int J Biol Macromol; 2023 Dec; 252():126485. PubMed ID: 37625753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protoporphyrin-IX conjugated cellulose nanofibers that exhibit high antibacterial photodynamic inactivation efficacy.
    Dong J; Ghiladi RA; Wang Q; Cai Y; Wei Q
    Nanotechnology; 2018 Jun; 29(26):265601. PubMed ID: 29611819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine extraction of cellulose from corn straw and the application for eco-friendly packaging films enhanced with polyvinyl alcohol.
    Zhang X; Fang C; Cheng Y; Li M; Liu J
    Int J Biol Macromol; 2024 May; 268(Pt 2):131984. PubMed ID: 38692552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.