These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38621972)
21. Two New Phenanthrene Glucosides from Cremastra appendiculata and their Cytotoxic Activities. Liu XQ; Li XP; Yuan WK; Yuan QY; Qin BH Nat Prod Commun; 2016 Apr; 11(4):477-9. PubMed ID: 27396197 [TBL] [Abstract][Full Text] [Related]
22. A new flavanone from the aerial parts of Penthorum chinense. Wang M; Jiang Y; Liu HL; Chen XQ; Wu X; Zhang DY Nat Prod Res; 2014; 28(2):70-3. PubMed ID: 24456387 [TBL] [Abstract][Full Text] [Related]
23. [Flavonoids from whole plants of Lagopsis supina]. Zhang J; Pang DR; Huang Z; Huo HX; Li YT; Zheng J; Zhang Q; Zhao YF; Tu PF; Li J Zhongguo Zhong Yao Za Zhi; 2015 Aug; 40(16):3224-8. PubMed ID: 26790297 [TBL] [Abstract][Full Text] [Related]
24. Liquid chromatography coupled to nuclear magnetic resonance spectroscopy for the identification of isoflavone glucoside malonates in T. pratense L. leaves. de Rijke E; de Kanter F; Ariese F; Brinkman UA; Gooijer C J Sep Sci; 2004 Sep; 27(13):1061-70. PubMed ID: 15495407 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L.) Maton (Zingiberaceae), Piper cubeba L. f. (Piperaceae), and Plumeria rubra L. (Apocynaceae). Ahmed AS; Ahmed Q; Saxena AK; Jamal P Pak J Pharm Sci; 2017 Jan; 30(1):113-126. PubMed ID: 28603121 [TBL] [Abstract][Full Text] [Related]
26. CYP79D73 Participates in Biosynthesis of Floral Scent Compound 2-Phenylethanol in Dhandapani S; Jin J; Sridhar V; Chua NH; Jang IC Plant Physiol; 2019 May; 180(1):171-184. PubMed ID: 30804010 [TBL] [Abstract][Full Text] [Related]
27. Novel isoflavone glucosides in groundnut (Apios americana Medik) and their antiandrogenic activities. Ichige M; Fukuda E; Miida S; Hattan J; Misawa N; Saito S; Fujimaki T; Imoto M; Shindo K J Agric Food Chem; 2013 Mar; 61(9):2183-7. PubMed ID: 23402539 [TBL] [Abstract][Full Text] [Related]
28. Flavanonol glucosides from the aerial parts of Agrimonia pilosa Ledeb. and their acetylcholinesterase inhibitory effects. Seo UM; Nguyen DH; Zhao BT; Min BS; Woo MH Carbohydr Res; 2017 Jun; 445():75-79. PubMed ID: 28458099 [TBL] [Abstract][Full Text] [Related]
29. Alkyl and phenolic glycosides from Saussurea stella. Wang TM; Wang RF; Chen HB; Shang MY; Cai SQ Fitoterapia; 2013 Jul; 88():38-43. PubMed ID: 23567860 [TBL] [Abstract][Full Text] [Related]
30. Potential anti-diabetic isoprenoids and a long-chain δ-lactone from frangipani (Plumeria rubra). Zhang SN; Song HZ; Ma RJ; Liang CQ; Wang HS; Tan QG Fitoterapia; 2020 Oct; 146():104684. PubMed ID: 32634455 [TBL] [Abstract][Full Text] [Related]
31. Potential bile acid metabolites. 24. An efficient synthesis of carboxyl-linked glucosides and their chemical properties. Lida T; Nakamori R; Yabuta R; Yada S; Takagi Y; Mano N; Ikegawa S; Goto J; Nambara T Lipids; 2002 Jan; 37(1):101-10. PubMed ID: 11876257 [TBL] [Abstract][Full Text] [Related]
32. Phenolic glucosides from Oxytropis myriophylla. Lu JH; Liu Y; Tu GZ; Zhao YY J Asian Nat Prod Res; 2002 Mar; 4(1):43-6. PubMed ID: 11991191 [TBL] [Abstract][Full Text] [Related]
33. Identification and screening of potential inhibitors obtained from Hazra S; Aziz A; Sharma S J Biomol Struct Dyn; 2023 Nov; 41(19):10081-10095. PubMed ID: 36510695 [TBL] [Abstract][Full Text] [Related]
34. An Apoplastic β-Glucosidase is Essential for the Degradation of Flavonol 3-O-β-Glucoside-7-O-α-Rhamnosides in Arabidopsis. Roepke J; Gordon HOW; Neil KJA; Gidda S; Mullen RT; Freixas Coutin JA; Bray-Stone D; Bozzo GG Plant Cell Physiol; 2017 Jun; 58(6):1030-1047. PubMed ID: 28419331 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of guaiacol-alpha-D: -glucoside and curcumin-bis-alpha-D: -glucoside by an amyloglucosidase from Rhizopus. R Vijayakumar G; Divakar S Biotechnol Lett; 2005 Sep; 27(18):1411-5. PubMed ID: 16215859 [TBL] [Abstract][Full Text] [Related]
36. A highly versatile fungal glucosyltransferase for specific production of quercetin-7-O-β-D-glucoside and quercetin-3-O-β-D-glucoside in different hosts. Ren J; Tang W; Barton CD; Price OM; Mortensen MW; Phillips A; Wald B; Hulme SE; Stanley LP; Hevel J; Zhan J Appl Microbiol Biotechnol; 2022 Jan; 106(1):227-245. PubMed ID: 34874472 [TBL] [Abstract][Full Text] [Related]
37. A new abietic acid-type diterpene glucoside from the needles of Pinus densiflora. Jung MJ; Jung HA; Kang SS; Hwang GS; Choi JS Arch Pharm Res; 2009 Dec; 32(12):1699-704. PubMed ID: 20162397 [TBL] [Abstract][Full Text] [Related]
38. [Studies on chemical constituents from Pteris multifida]. Wang WS; Wang ZQ; Zhou YW Zhong Yao Cai; 2008 Aug; 31(8):1165-7. PubMed ID: 19112896 [TBL] [Abstract][Full Text] [Related]
39. Biosynthesis of malonylated flavonoid glycosides on the basis of malonyltransferase activity in the petals of Clitoria ternatea. Kogawa K; Kazuma K; Kato N; Noda N; Suzuki M J Plant Physiol; 2007 Jul; 164(7):886-94. PubMed ID: 16887235 [TBL] [Abstract][Full Text] [Related]
40. Definition of chemical markers for Hancornia speciosa Gomes by chemometric analysis based on the chemical composition of extracts, their vasorelaxant effect and α-glucosidase inhibition. Pereira ABD; Gomes JHS; Pereira AC; Pádua RM; Côrtes SF; Sena MM; Braga FC J Ethnopharmacol; 2022 Dec; 299():115692. PubMed ID: 36084818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]