BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38622038)

  • 1. Thiol dioxygenases: from structures to functions.
    Perri M; Licausi F
    Trends Biochem Sci; 2024 Jun; 49(6):545-556. PubMed ID: 38622038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases.
    Fernandez RL; Juntunen ND; Brunold TC
    Acc Chem Res; 2022 Sep; 55(17):2480-2490. PubMed ID: 35994511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging roles for thiol dioxygenases as oxygen sensors.
    Gunawardana DM; Heathcote KC; Flashman E
    FEBS J; 2022 Sep; 289(18):5426-5439. PubMed ID: 34346181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of human cysteamine dioxygenase provides a structural rationale for its function as an oxygen sensor.
    Wang Y; Shin I; Li J; Liu A
    J Biol Chem; 2021 Oct; 297(4):101176. PubMed ID: 34508780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol dioxygenases: unique families of cupin proteins.
    Stipanuk MH; Simmons CR; Karplus PA; Dominy JE
    Amino Acids; 2011 Jun; 41(1):91-102. PubMed ID: 20195658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate Specificity in Thiol Dioxygenases.
    Aloi S; Davies CG; Karplus PA; Wilbanks SM; Jameson GNL
    Biochemistry; 2019 May; 58(19):2398-2407. PubMed ID: 31045343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, X-ray Structures, Electronic Properties, and O
    Fischer AA; Stracey N; Lindeman SV; Brunold TC; Fiedler AT
    Inorg Chem; 2016 Nov; 55(22):11839-11853. PubMed ID: 27801576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures, Spectroscopic Properties, and Dioxygen Reactivity of 5- and 6-Coordinate Nonheme Iron(II) Complexes: A Combined Enzyme/Model Study of Thiol Dioxygenases.
    Gordon JB; McGale JP; Prendergast JR; Shirani-Sarmazeh Z; Siegler MA; Jameson GNL; Goldberg DP
    J Am Chem Soc; 2018 Nov; 140(44):14807-14822. PubMed ID: 30346746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates.
    Wang Y; Davis I; Chan Y; Naik SG; Griffith WP; Liu A
    J Biol Chem; 2020 Aug; 295(33):11789-11802. PubMed ID: 32601061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of
    White MD; Dalle Carbonare L; Lavilla Puerta M; Iacopino S; Edwards M; Dunne K; Pires E; Levy C; McDonough MA; Licausi F; Flashman E
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23140-23147. PubMed ID: 32868422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state substrate specificity and O₂-coupling efficiency of mouse cysteine dioxygenase.
    Li W; Pierce BS
    Arch Biochem Biophys; 2015 Jan; 565():49-56. PubMed ID: 25444857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of 3-mercaptopropionic acid dioxygenase with a substrate analog reveals bidentate substrate binding at the iron center.
    York NJ; Lockart MM; Sardar S; Khadka N; Shi W; Stenkamp RE; Zhang J; Kiser PD; Pierce BS
    J Biol Chem; 2021; 296():100492. PubMed ID: 33662397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O
    Morrow WP; Sardar S; Thapa P; Hossain MS; Foss FW; Pierce BS
    Arch Biochem Biophys; 2017 Oct; 631():66-74. PubMed ID: 28826737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine.
    Nalivaiko EY; Vasseur CM; Seebeck FP
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202318445. PubMed ID: 38095354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate and pH-Dependent Kinetic Profile of 3-Mercaptopropionate Dioxygenase from Pseudomonas aeruginosa.
    Fellner M; Aloi S; Tchesnokov EP; Wilbanks SM; Jameson GN
    Biochemistry; 2016 Mar; 55(9):1362-71. PubMed ID: 26878277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyanide replaces substrate in obligate-ordered addition of nitric oxide to the non-heme mononuclear iron AvMDO active site.
    York NJ; Lockart MM; Schmittou AN; Pierce BS
    J Biol Inorg Chem; 2023 Apr; 28(3):285-299. PubMed ID: 36809458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology.
    Sarkar B; Kulharia M; Mantha AK
    Int J Exp Pathol; 2017 Apr; 98(2):52-66. PubMed ID: 28439920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of thiol contents in plants.
    Höfgen R; Kreft O; Willmitzer L; Hesse H
    Amino Acids; 2001; 20(3):291-9. PubMed ID: 11354605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of different amino acid residues in the reaction mechanism of gentisate 1,2-dioxygenases deduced from the analysis of mutants of the salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans.
    Eppinger E; Ferraroni M; Bürger S; Steimer L; Peng G; Briganti F; Stolz A
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1425-37. PubMed ID: 26093111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of PnpCD, a two-subunit hydroquinone 1,2-dioxygenase, reveals a novel structural class of Fe2+-dependent dioxygenases.
    Liu S; Su T; Zhang C; Zhang WM; Zhu D; Su J; Wei T; Wang K; Huang Y; Guo L; Xu S; Zhou NY; Gu L
    J Biol Chem; 2015 Oct; 290(40):24547-60. PubMed ID: 26304122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.