These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38622170)

  • 1. Exploring the origin of a unique mutant allele in twin-tail goldfish using CRISPR/Cas9 mutants.
    Lee SH; Wang CY; Li IJ; Abe G; Ota KG
    Sci Rep; 2024 Apr; 14(1):8716. PubMed ID: 38622170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel allele of the goldfish chdB gene: Functional evaluation and evolutionary considerations.
    Abe G; Li IJ; Lee SH; Ota KG
    J Exp Zool B Mol Dev Evol; 2018 Sep; 330(6-7):372-383. PubMed ID: 30387925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative evolutionary pathway for the twin-tail goldfish via szl gene mutation.
    Abe G; Lee SH; Li IJ; Ota KG
    J Exp Zool B Mol Dev Evol; 2018 Jun; 330(4):234-241. PubMed ID: 29947476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleiotropic functions of chordin gene causing drastic morphological changes in ornamental goldfish.
    Chen HC; Wang C; Li IJ; Abe G; Ota KG
    Sci Rep; 2022 Nov; 12(1):19961. PubMed ID: 36402810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary developmental transition from median to paired morphology of vertebrate fins: Perspectives from twin-tail goldfish.
    Abe G; Ota KG
    Dev Biol; 2017 Jul; 427(2):251-257. PubMed ID: 27939770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertional mutagenesis in ChordinA induced by endogenous ΔTgf2 transposon leads to bifurcation of axial skeletal systems in grass goldfish.
    Guo DD; Sun YW; Cui WT; Guo HH; Du SK; Chen J; Zou SM
    Sci Rep; 2019 Mar; 9(1):4098. PubMed ID: 30858477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic and postembryonic development of the ornamental twin-tail goldfish.
    Li IJ; Lee SH; Abe G; Ota KG
    Dev Dyn; 2019 Apr; 248(4):251-283. PubMed ID: 30687996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of the bifurcated axial skeletal system in the twin-tail goldfish.
    Abe G; Lee SH; Chang M; Liu SC; Tsai HY; Ota KG
    Nat Commun; 2014 Feb; 5():3360. PubMed ID: 24569511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Genetic Basis of Morphological Diversity in Domesticated Goldfish.
    Kon T; Omori Y; Fukuta K; Wada H; Watanabe M; Chen Z; Iwasaki M; Mishina T; Matsuzaki SS; Yoshihara D; Arakawa J; Kawakami K; Toyoda A; Burgess SM; Noguchi H; Furukawa T
    Curr Biol; 2020 Jun; 30(12):2260-2274.e6. PubMed ID: 32392470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open and closed evolutionary paths for drastic morphological changes, involving serial gene duplication, sub-functionalization, and selection.
    Abe G; Lee SH; Li IJ; Chang CJ; Tamura K; Ota KG
    Sci Rep; 2016 May; 6():26838. PubMed ID: 27220684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Variation in an Experimental Goldfish Derived From Hybridization.
    Wang J; He W; Zeng J; Li L; Zhang G; Li T; Xiang C; Chai M; Liu S
    Front Genet; 2020; 11():595959. PubMed ID: 33384717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Goldfish morphology as a model for evolutionary developmental biology.
    Ota KG; Abe G
    Wiley Interdiscip Rev Dev Biol; 2016; 5(3):272-95. PubMed ID: 26952007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating Zebrafish RNA-Less Mutant Alleles by Deleting Gene Promoters with CRISPR/Cas9.
    Kumari P; Sturgeon M; Bonde G; Cornell RA
    Methods Mol Biol; 2022; 2403():91-106. PubMed ID: 34913119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient Genome Editing Strategy To Generate Putative Null Mutants in
    Wang H; Park H; Liu J; Sternberg PW
    G3 (Bethesda); 2018 Nov; 8(11):3607-3616. PubMed ID: 30224336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts.
    Andersson M; Turesson H; Nicolia A; Fält AS; Samuelsson M; Hofvander P
    Plant Cell Rep; 2017 Jan; 36(1):117-128. PubMed ID: 27699473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans.
    Arribere JA; Bell RT; Fu BX; Artiles KL; Hartman PS; Fire AZ
    Genetics; 2014 Nov; 198(3):837-46. PubMed ID: 25161212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize.
    Char SN; Neelakandan AK; Nahampun H; Frame B; Main M; Spalding MH; Becraft PW; Meyers BC; Walbot V; Wang K; Yang B
    Plant Biotechnol J; 2017 Feb; 15(2):257-268. PubMed ID: 27510362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in zygotic CRISPR/Cas9 gene editing outcomes generates novel reporter and deletion alleles at the Gdf11 locus.
    Goldstein JM; Valido A; Lewandowski JP; Walker RG; Mills MJ; Messemer KA; Besseling P; Lee KH; Wattrus SJ; Cho M; Lee RT; Wagers AJ
    Sci Rep; 2019 Dec; 9(1):18613. PubMed ID: 31819086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Method for Rapid Selection of Randomly Induced Mutations in a Gene of Interest Using CRISPR/Cas9 Mediated Activation of Gene Expression.
    Ng WA; Ma A; Chen M; Reed BH
    G3 (Bethesda); 2020 Jun; 10(6):1893-1901. PubMed ID: 32312838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.