These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38622192)

  • 1. Spectral shifted Chebyshev collocation technique with residual power series algorithm for time fractional problems.
    Rida SZ; Arafa AAM; Hussein HS; Ameen IG; Mostafa MMM
    Sci Rep; 2024 Apr; 14(1):8683. PubMed ID: 38622192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods.
    Saad KM; Khader MM; Gómez-Aguilar JF; Baleanu D
    Chaos; 2019 Feb; 29(2):023116. PubMed ID: 30823705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations.
    Jafari H; Nemati S; Ganji RM
    Adv Differ Equ; 2021; 2021(1):435. PubMed ID: 34630543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus.
    Srivastava HM; Saad KM; Khader MM
    Chaos Solitons Fractals; 2020 Nov; 140():110174. PubMed ID: 32834654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method.
    Bahşı AK; Yalçınbaş S
    Springerplus; 2016; 5(1):1375. PubMed ID: 27610294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative.
    El-Ajou A; Oqielat MN; Al-Zhour Z; Kumar S; Momani S
    Chaos; 2019 Sep; 29(9):093102. PubMed ID: 31575153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix.
    Xie J; Huang Q; Yang X
    Springerplus; 2016; 5(1):1149. PubMed ID: 27504247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A space-time spectral collocation algorithm for the variable order fractional wave equation.
    Bhrawy AH; Doha EH; Alzaidy JF; Abdelkawy MA
    Springerplus; 2016; 5(1):1220. PubMed ID: 27536504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sinc-Chebyshev collocation method for a class of fractional diffusion-wave equations.
    Mao Z; Xiao A; Yu Z; Shi L
    ScientificWorldJournal; 2014; 2014():143983. PubMed ID: 24977177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations.
    Khader MM
    J Comput Nonlinear Dyn; 2013 Oct; 8(4):41018-NaN. PubMed ID: 24891846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative Chebyshev approximation method for optimal control problems.
    Wu D; Yu C; Wang H; Bai Y; Teo KL; Toh KC
    ISA Trans; 2024 Sep; 152():277-289. PubMed ID: 38926019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical study of fractional rheological models and fractional Newell-Whitehead-Segel equation with non-local and non-singular kernel.
    Tuan NH; Ganji RM; Jafari H
    Chin J Phys; 2020 Dec; 68():308-320. PubMed ID: 38620336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.
    Motsa SS; Magagula VM; Sibanda P
    ScientificWorldJournal; 2014; 2014():581987. PubMed ID: 25254252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalized Chebyshev operational method for Volterra integro-partial differential equations with weakly singular kernels.
    Sadri K; Amilo D; Hinçal E; Hosseini K; Salahshour S
    Heliyon; 2024 Mar; 10(5):e27260. PubMed ID: 38562493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Crank-Nicolson collocation spectral method for the two-dimensional telegraph equations.
    Zhou Y; Luo Z
    J Inequal Appl; 2018; 2018(1):137. PubMed ID: 30137734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid collocation method for solving highly nonlinear boundary value problems.
    Adewumi AO; Akindeinde SO; Aderogba AA; Ogundare BS
    Heliyon; 2020 Mar; 6(3):e03553. PubMed ID: 32195390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability analysis and numerical evaluations of a COVID-19 model with vaccination.
    Izadi M; Waezizadeh T
    BMC Med Res Methodol; 2024 Apr; 24(1):97. PubMed ID: 38678207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel Chebyshev neural network approach for solving singular arbitrary order Lane-Emden equation arising in astrophysics.
    Mall S; Chakraverty S
    Network; 2020; 31(1-4):142-165. PubMed ID: 33148086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Legendre spectral-collocation method for solving some types of fractional optimal control problems.
    Sweilam NH; Al-Ajami TM
    J Adv Res; 2015 May; 6(3):393-403. PubMed ID: 26257937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating accurate and effective solutions of some nonlinear nonlocal two-point BVPs: Clique and QLM-clique matrix methods.
    Izadi M; Singh J; Noeiaghdam S
    Heliyon; 2023 Nov; 9(11):e22267. PubMed ID: 38053889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.