These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 38622356)

  • 1. MGCNSS: miRNA-disease association prediction with multi-layer graph convolution and distance-based negative sample selection strategy.
    Tian Z; Han C; Xu L; Teng Z; Song W
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38622356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model.
    Zhang L; Liu B; Li Z; Zhu X; Liang Z; An J
    BMC Bioinformatics; 2020 Oct; 21(1):470. PubMed ID: 33087064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information.
    Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting miRNA-Disease Associations by Combining Graph and Hypergraph Convolutional Network.
    Liang X; Guo M; Jiang L; Fu Y; Zhang P; Chen Y
    Interdiscip Sci; 2024 Jun; 16(2):289-303. PubMed ID: 38286905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion.
    Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S
    Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A graph auto-encoder model for miRNA-disease associations prediction.
    Li Z; Li J; Nie R; You ZH; Bao W
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 34293850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational graph auto-encoders for miRNA-disease association prediction.
    Ding Y; Tian LP; Lei X; Liao B; Wu FX
    Methods; 2021 Aug; 192():25-34. PubMed ID: 32798654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MUSCLE: multi-view and multi-scale attentional feature fusion for microRNA-disease associations prediction.
    Ji B; Zou H; Xu L; Xie X; Peng S
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38605642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network.
    Pang S; Zhuang Y; Wang X; Wang F; Qiao S
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):319. PubMed ID: 34789236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDMDA: predicting deep-level miRNA-disease associations with graph neural networks and sequence features.
    Yan C; Duan G; Li N; Zhang L; Wu FX; Wang J
    Bioinformatics; 2022 Apr; 38(8):2226-2234. PubMed ID: 35150255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical graph attention network for miRNA-disease association prediction.
    Li Z; Zhong T; Huang D; You ZH; Nie R
    Mol Ther; 2022 Apr; 30(4):1775-1786. PubMed ID: 35121109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction.
    Xuan P; Wang X; Cui H; Meng X; Nakaguchi T; Zhang T
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4306-4316. PubMed ID: 38709611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for miRNA diffusion association prediction using machine learning decoding of multi-level heterogeneous graph Transformer encoded representations.
    Wen S; Liu Y; Yang G; Chen W; Wu H; Zhu X; Wang Y
    Sci Rep; 2024 Sep; 14(1):20490. PubMed ID: 39227405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MiRNA-disease association prediction based on meta-paths.
    Yu L; Zheng Y; Gao L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35018405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA-gene-disease networks.
    Si Y; Huang Z; Fang Z; Yuan Z; Huang Z; Li Y; Wei Y; Wu F; Yao YF
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39256197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction.
    Jiao CN; Zhou F; Liu BM; Zheng CH; Liu JX; Gao YL
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1110-1121. PubMed ID: 38055359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined embedding model for MiRNA-disease association prediction.
    Liu B; Zhu X; Zhang L; Liang Z; Li Z
    BMC Bioinformatics; 2021 Mar; 22(1):161. PubMed ID: 33765909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.