These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38622648)
1. Mind your prevalence! Guesné SJJ; Hanser T; Werner S; Boobier S; Scott S J Cheminform; 2024 Apr; 16(1):43. PubMed ID: 38622648 [TBL] [Abstract][Full Text] [Related]
2. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. Chicco D; Tötsch N; Jurman G BioData Min; 2021 Feb; 14(1):13. PubMed ID: 33541410 [TBL] [Abstract][Full Text] [Related]
3. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. Boughorbel S; Jarray F; El-Anbari M PLoS One; 2017; 12(6):e0177678. PubMed ID: 28574989 [TBL] [Abstract][Full Text] [Related]
4. A statistical comparison between Matthews correlation coefficient (MCC), prevalence threshold, and Fowlkes-Mallows index. Chicco D; Jurman G J Biomed Inform; 2023 Aug; 144():104426. PubMed ID: 37352899 [TBL] [Abstract][Full Text] [Related]
5. Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient. Foody GM PLoS One; 2023; 18(10):e0291908. PubMed ID: 37792898 [TBL] [Abstract][Full Text] [Related]
6. The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. Chicco D; Jurman G BioData Min; 2023 Feb; 16(1):4. PubMed ID: 36800973 [TBL] [Abstract][Full Text] [Related]
7. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. Chicco D; Jurman G BMC Genomics; 2020 Jan; 21(1):6. PubMed ID: 31898477 [TBL] [Abstract][Full Text] [Related]
8. Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data. Thölke P; Mantilla-Ramos YJ; Abdelhedi H; Maschke C; Dehgan A; Harel Y; Kemtur A; Mekki Berrada L; Sahraoui M; Young T; Bellemare Pépin A; El Khantour C; Landry M; Pascarella A; Hadid V; Combrisson E; O'Byrne J; Jerbi K Neuroimage; 2023 Aug; 277():120253. PubMed ID: 37385392 [TBL] [Abstract][Full Text] [Related]
9. How to evaluate an agent's behavior to infrequent events?-Reliable performance estimation insensitive to class distribution. Straube S; Krell MM Front Comput Neurosci; 2014; 8():43. PubMed ID: 24782751 [TBL] [Abstract][Full Text] [Related]
10. Rank order entropy: why one metric is not enough. McLellan MR; Ryan MD; Breneman CM J Chem Inf Model; 2011 Sep; 51(9):2302-19. PubMed ID: 21875058 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of QSAR Equations for Virtual Screening. Spiegel J; Senderowitz H Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33105703 [TBL] [Abstract][Full Text] [Related]
12. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
13. Formal definition of the MARS method for quantifying the unique target class discoveries of selected machine classifiers. Restrepo F; Mali N; Abrahams A; Ractham P F1000Res; 2022; 11():391. PubMed ID: 35967970 [TBL] [Abstract][Full Text] [Related]
14. The power metric: a new statistically robust enrichment-type metric for virtual screening applications with early recovery capability. Lopes JCD; Dos Santos FM; Martins-José A; Augustyns K; De Winter H J Cheminform; 2017; 9():7. PubMed ID: 28203291 [TBL] [Abstract][Full Text] [Related]
15. Integrating QSAR models predicting acute contact toxicity and mode of action profiling in honey bees (A. mellifera): Data curation using open source databases, performance testing and validation. Carnesecchi E; Toma C; Roncaglioni A; Kramer N; Benfenati E; Dorne JLCM Sci Total Environ; 2020 Sep; 735():139243. PubMed ID: 32480144 [TBL] [Abstract][Full Text] [Related]
16. "Dead or Alive?" Assessment of the Binary End-of-Event Outcome Indicator for the NEMSIS Public Research Dataset. Helander ME Prehosp Emerg Care; 2024 Aug; ():1-10. PubMed ID: 39106451 [TBL] [Abstract][Full Text] [Related]
18. Applying machine learning techniques to predict the risk of lung metastases from rectal cancer: a real-world retrospective study. Qiu B; Shen Z; Yang D; Wang Q Front Oncol; 2023; 13():1183072. PubMed ID: 37293595 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of performance metrics for histopathological image classifier optimization. Zachariah N; Kothari S; Ramamurthy S; Osunkoya AO; Wang MD Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1933-6. PubMed ID: 25570358 [TBL] [Abstract][Full Text] [Related]
20. Differential Biases and Variabilities of Deep Learning-Based Artificial Intelligence and Human Experts in Clinical Diagnosis: Retrospective Cohort and Survey Study. Cha D; Pae C; Lee SA; Na G; Hur YK; Lee HY; Cho AR; Cho YJ; Han SG; Kim SH; Choi JY; Park HJ JMIR Med Inform; 2021 Dec; 9(12):e33049. PubMed ID: 34889764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]