These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38623220)
21. Is the yeast a relevant model for aging of multicellular organisms? An insight from the total lifespan of Saccharomyces cerevisiae. Zadrag R; Bartosz G; Bilinski T Curr Aging Sci; 2008 Dec; 1(3):159-65. PubMed ID: 20021387 [TBL] [Abstract][Full Text] [Related]
22. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316 [TBL] [Abstract][Full Text] [Related]
23. The spectral distribution of the luminescence emitted during growth of the yeast Saccharomyces cerevisiae and its relationship to mitogenetic radiation. Quickenden TI; Que Hee SS Photochem Photobiol; 1976 Mar; 23(3):201-4. PubMed ID: 772727 [No Abstract] [Full Text] [Related]
24. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources. Paulo JA; O'Connell JD; Everley RA; O'Brien J; Gygi MA; Gygi SP J Proteomics; 2016 Oct; 148():85-93. PubMed ID: 27432472 [TBL] [Abstract][Full Text] [Related]
25. Biodemographic trajectories of age-specific reproliferation from stationary phase in the yeast Saccharomyces cerevisiae seem multiphasic. Gendron CM; Minois N; Fabrizio P; Longo VD; Pletcher SD; Vaupel JW Mech Ageing Dev; 2003 Dec; 124(10-12):1059-63. PubMed ID: 14659594 [TBL] [Abstract][Full Text] [Related]
26. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates. Liu Y; El Masoudi A; Pronk JT; van Gulik WM Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494 [TBL] [Abstract][Full Text] [Related]
27. Non-linearities and data analysis: towards a quantitative investigation of delayed luminescence. Ciardi A; Milani M Hum Exp Toxicol; 2006 Mar; 25(3):141-6. PubMed ID: 16634333 [TBL] [Abstract][Full Text] [Related]
28. L-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon. Kwolek-Mirek M; Molon M; Kaszycki P; Zadrag-Tecza R Biogerontology; 2016 Aug; 17(4):737-47. PubMed ID: 27040824 [TBL] [Abstract][Full Text] [Related]
29. Effect of aerobic and microaerophilic culture in the growth dynamics of Saccharomyces cerevisiae and in training of quiescent and non-quiescent subpopulations. Carbó R; Ginovart M; Carta A; Portell X; del Valle LJ Arch Microbiol; 2015 Oct; 197(8):991-9. PubMed ID: 26206245 [TBL] [Abstract][Full Text] [Related]
30. Synchronization of the Budding Yeast Saccharomyces cerevisiae. Foltman M; Molist I; Sanchez-Diaz A Methods Mol Biol; 2016; 1369():279-91. PubMed ID: 26519319 [TBL] [Abstract][Full Text] [Related]
31. Use of chemostat cultures mimicking different phases of wine fermentations as a tool for quantitative physiological analysis. Vázquez-Lima F; Silva P; Barreiro A; Martínez-Moreno R; Morales P; Quirós M; González R; Albiol J; Ferrer P Microb Cell Fact; 2014 Jun; 13():85. PubMed ID: 24928139 [TBL] [Abstract][Full Text] [Related]
32. Digital Image Analysis of Yeast Single Cells Growing in Two Different Oxygen Concentrations to Analyze the Population Growth and to Assist Individual-Based Modeling. Ginovart M; Carbó R; Blanco M; Portell X Front Microbiol; 2017; 8():2628. PubMed ID: 29354112 [TBL] [Abstract][Full Text] [Related]
33. Aging and the survival of quiescent and non-quiescent cells in yeast stationary-phase cultures. Werner-Washburne M; Roy S; Davidson GS Subcell Biochem; 2012; 57():123-43. PubMed ID: 22094420 [TBL] [Abstract][Full Text] [Related]
34. Incorporation of copper into the yeast Saccharomyces cerevisiae. Identification of Cu(I)--metallothionein in intact yeast cells. Presta A; Stillman MJ J Inorg Biochem; 1997 Jun; 66(4):231-40. PubMed ID: 9161010 [TBL] [Abstract][Full Text] [Related]
35. Ultrasound assisted modulation of yeast growth and inactivation kinetics. Soro AB; Oliveira M; O'Donnell CP; Tiwari BK Ultrason Sonochem; 2021 Dec; 80():105819. PubMed ID: 34768062 [TBL] [Abstract][Full Text] [Related]
36. Lipid biosynthesis monitored at the single-cell level in Saccharomyces cerevisiae. Chumnanpuen P; Brackmann C; Nandy SK; Chatzipapadopoulos S; Nielsen J; Enejder A Biotechnol J; 2012 May; 7(5):594-601. PubMed ID: 22442011 [TBL] [Abstract][Full Text] [Related]
37. A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family. Braun EL; Fuge EK; Padilla PA; Werner-Washburne M J Bacteriol; 1996 Dec; 178(23):6865-72. PubMed ID: 8955308 [TBL] [Abstract][Full Text] [Related]
38. A mathematical model of Saccharomyces cerevisiae growth in response to cadmium toxicity. Hietala KA; Lynch ML; Allshouse JC; Johns CJ; Roane TM J Basic Microbiol; 2006; 46(3):196-202. PubMed ID: 16721879 [TBL] [Abstract][Full Text] [Related]
39. Global gene expression in recombinant and non-recombinant yeast Saccharomyces cerevisiae in three different metabolic states. Díaz H; Andrews BA; Hayes A; Castrillo J; Oliver SG; Asenjo JA Biotechnol Adv; 2009; 27(6):1092-1117. PubMed ID: 19463941 [TBL] [Abstract][Full Text] [Related]
40. Fatty Acyl Coenzyme A Synthetase Fat1p Regulates Vacuolar Structure and Stationary-Phase Lipophagy in Saccharomyces cerevisiae. Qiu F; Kang N; Tan J; Yan S; Lin L; Cai L; Goodman JM; Gao Q Microbiol Spectr; 2023 Feb; 11(1):e0462522. PubMed ID: 36598223 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]