BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38623272)

  • 1. Surface-displayed phenolic acid decarboxylase for increased vinylphenolic pyranoanthocyanins in blueberry wine.
    Deng H; Gu Q; Yu X; Zhou J; Liu X
    Curr Res Food Sci; 2024; 8():100730. PubMed ID: 38623272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of pyranoanthocyanin formation in blueberry wine with non-Saccharomyces yeasts.
    Zhou J; Tang C; Zou S; Lei L; Wu Y; Yang W; Harindintwali JD; Zhang J; Zeng W; Deng D; Zhao M; Yu X; Liu X; Qiu S; Arneborg N
    Food Chem; 2024 Apr; 438():137956. PubMed ID: 37989022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of vinylphenolic pyranoanthocyanins by selected indigenous yeasts displaying high hydroxycinnamate decarboxylase activity during mulberry wine fermentation and aging.
    Gao Y; Wang X; Ai J; Huang W; Zhan J; You Y
    Food Microbiol; 2023 Aug; 113():104272. PubMed ID: 37098424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of pyranoanthocyanins by Schizosaccharomyces pombe during the fermentation of red must.
    Morata A; Benito S; Loira I; Palomero F; González MC; Suárez-Lepe JA
    Int J Food Microbiol; 2012 Sep; 159(1):47-53. PubMed ID: 22921967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimization of ethylphenol precursors in red wines via the formation of pyranoanthocyanins by selected yeasts.
    Benito S; Palomero F; Morata A; Uthurry C; Suárez-Lepe JA
    Int J Food Microbiol; 2009 Jun; 132(2-3):145-52. PubMed ID: 19439384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of
    Morata A; Escott C; Loira I; Del Fresno JM; González C; Suárez-Lepe JA
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Fermentation Time on the Phenolic Compounds, Vitamin C, Color and Antioxidant Activity in the Winemaking Process of Blueberry (
    Varo MA; Serratosa MP; Martín-Gómez J; Moyano L; Mérida J
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast influence on the formation of stable pigments in red winemaking.
    Morata A; Loira I; Heras JM; Callejo MJ; Tesfaye W; González C; Suárez-Lepe JA
    Food Chem; 2016 Apr; 197(Pt A):686-91. PubMed ID: 26617004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of
    Huang M; Liu X; Li X; Sheng X; Li T; Tang W; Yu Z; Wang Y
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432199
    [No Abstract]   [Full Text] [Related]  

  • 10. Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity.
    Nixdorf SL; Hermosín-Gutiérrez I
    Anal Chim Acta; 2010 Feb; 659(1-2):208-15. PubMed ID: 20103126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of vinylphenolic pyranoanthocyanins by selected yeasts fermenting red grape musts supplemented with hydroxycinnamic acids.
    Morata A; González C; Suárez-Lepe JA
    Int J Food Microbiol; 2007 May; 116(1):144-52. PubMed ID: 17303275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces.
    Morata A; Gómez-Cordovés MC; Calderón F; Suárez JA
    Int J Food Microbiol; 2006 Feb; 106(2):123-9. PubMed ID: 16225947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering the Influence of Microorganisms on Wine Color.
    Tofalo R; Suzzi G; Perpetuini G
    Front Microbiol; 2021; 12():790935. PubMed ID: 34925298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetaldehyde released by Lactobacillus plantarum enhances accumulation of pyranoanthocyanins in wine during malolactic fermentation.
    Wang S; Li S; Zhao H; Gu P; Chen Y; Zhang B; Zhu B
    Food Res Int; 2018 Jun; 108():254-263. PubMed ID: 29735055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of 4-ethylphenol production in red wines using HCDC+ yeasts and cinnamyl esterases.
    Morata A; Vejarano R; Ridolfi G; Benito S; Palomero F; Uthurry C; Tesfaye W; González C; Suárez-Lepe JA
    Enzyme Microb Technol; 2013 Feb; 52(2):99-104. PubMed ID: 23273278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of polyphenolic, anthocyanin, and organic acid components during coinoculation fermentation (simultaneous inoculation of LAB and yeast) and sequential fermentation of blueberry wine.
    Zhang J; Fang L; Huang X; Ding Z; Wang C
    J Food Sci; 2022 Nov; 87(11):4878-4891. PubMed ID: 36258662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of pyranoanthocyanins in sparkling wines manufactured with red grape varieties.
    Pozo-Bayón MA; Monagas M; Polo MC; Gómez-Cordovés C
    J Agric Food Chem; 2004 Mar; 52(5):1300-6. PubMed ID: 14995137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of selected indigenous yeasts on Pinot Noir wine colour properties.
    Topić Božič J; Butinar L; Antalick G; Sternad Lemut M; Martelanc M; Albreht A; Korte D; Mozetič Vodopivec B
    J Sci Food Agric; 2022 Jan; 102(2):664-672. PubMed ID: 34165824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects on the color, taste, and anthocyanins stability of blueberry wine by different contents of mannoprotein.
    Sun X; Yan Z; Zhu T; Zhu J; Wang Y; Li B; Meng X
    Food Chem; 2019 May; 279():63-69. PubMed ID: 30611513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of hydroxyphenyl-pyranoanthocyanins in Grenache wines: precursor levels and evolution during aging.
    Rentzsch M; Schwarz M; Winterhalter P; Hermosín-Gutiérrez I
    J Agric Food Chem; 2007 Jun; 55(12):4883-8. PubMed ID: 17506569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.