These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38623698)

  • 21. Dirhodium(II)-Catalyzed Sulfide Oxygenations: Catalyst Removal by Coprecipitation with Sulfoxides.
    Zhao L; Zhang H; Wang Y
    J Org Chem; 2016 Jan; 81(1):129-36. PubMed ID: 26643580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N-Aminopyridinium reagents as traceless activating groups in the synthesis of N-Aryl aziridines.
    Tan H; Samanta S; Maity A; Roychowdhury P; Powers DC
    Nat Commun; 2022 Jun; 13(1):3341. PubMed ID: 35689000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The asymmetric synthesis of terminal aziridines by methylene transfer from sulfonium ylides to imines.
    Kavanagh SA; Piccinini A; Connon SJ
    Org Biomol Chem; 2013 Jun; 11(21):3535-40. PubMed ID: 23598787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for a one-electron mechanistic regime in dirhodium-catalyzed intermolecular C-H amination.
    Kornecki KP; Berry JF
    Chemistry; 2011 May; 17(21):5827-32. PubMed ID: 21506189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic diamination of olefins via N-N bond activation.
    Zhu Y; Cornwall RG; Du H; Zhao B; Shi Y
    Acc Chem Res; 2014 Dec; 47(12):3665-78. PubMed ID: 25402963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dibenzothiophenesulfilimines: A Convenient Approach to Intermolecular Rhodium-Catalysed C-H Amidation.
    Antoni PW; Mackenroth AV; Mulks FF; Rudolph M; Helmchen G; Hashmi ASK
    Chemistry; 2020 Jul; 26(37):8235-8238. PubMed ID: 32428332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metalloporphyrin-mediated asymmetric nitrogen-atom transfer to hydrocarbons: aziridination of alkenes and amidation of saturated C-H bonds catalyzed by chiral ruthenium and manganese porphyrins.
    Liang JL; Huang JS; Yu XQ; Zhu N; Che CM
    Chemistry; 2002 Apr; 8(7):1563-72. PubMed ID: 11933085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Air- and moisture-stable amphoteric molecules: enabling reagents in synthesis.
    He Z; Zajdlik A; Yudin AK
    Acc Chem Res; 2014 Apr; 47(4):1029-40. PubMed ID: 24495255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthetic applications of nonmetal catalysts for homogeneous oxidations.
    Adam W; Saha-Möller CR; Ganeshpure PA
    Chem Rev; 2001 Nov; 101(11):3499-548. PubMed ID: 11840992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chiral Cp
    Wang J; Luo MP; Gu YJ; Liu YY; Yin Q; Wang SG
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202400502. PubMed ID: 38279683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis.
    Davison RT; Kuker EL; Dong VM
    Acc Chem Res; 2021 Mar; 54(5):1236-1250. PubMed ID: 33533586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of nitrene by the photolysis of N-substituted iminodibenzothiophene.
    Morita H; Tatami A; Maeda T; Kim BJ; Kawashima W; Yoshimura T; Abe H; Akasaka T
    J Org Chem; 2008 Sep; 73(18):7159-63. PubMed ID: 18722411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of cobalt(II) porphyrin-catalyzed C-H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(III)-nitrene intermediates.
    Lyaskovskyy V; Suarez AI; Lu H; Jiang H; Zhang XP; de Bruin B
    J Am Chem Soc; 2011 Aug; 133(31):12264-73. PubMed ID: 21711027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of Nonclassical Photoprecursors for Rh
    Paikar A; Van Trieste GP; Das A; Wang CW; Sill TE; Bhuvanesh N; Powers DC
    Inorg Chem; 2023 Aug; 62(31):12557-12564. PubMed ID: 37499228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Powerful, Thermally Stable, One-Pot-Preparable, and Recyclable Electrophilic Trifluoromethylating Agents: 2,8-Difluoro- and 2,3,7,8-Tetrafluoro-S-(trifluoromethyl)dibenzothiophenium Salts.
    Umemoto T; Zhang B; Zhu T; Zhou X; Zhang P; Hu S; Li Y
    J Org Chem; 2017 Aug; 82(15):7708-7719. PubMed ID: 28541682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct and Stereospecific Synthesis of N-H and N-Alkyl Aziridines from Unactivated Olefins Using Hydroxylamine-O-Sulfonic Acids.
    Ma Z; Zhou Z; Kürti L
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9886-9890. PubMed ID: 28614619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porphyrin Cobalt(III) "Nitrene Radical" Reactivity; Hydrogen Atom Transfer from Ortho-YH Substituents to the Nitrene Moiety of Cobalt-Bound Aryl Nitrene Intermediates (Y = O, NH).
    Goswami M; Rebreyend C; de Bruin B
    Molecules; 2016 Feb; 21(2):242. PubMed ID: 26907236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Domino-hydroformylation/aldol condensation catalysis: highly selective synthesis of α,β-unsaturated aldehydes from olefins.
    Fang X; Jackstell R; Franke R; Beller M
    Chemistry; 2014 Oct; 20(41):13210-6. PubMed ID: 25179918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic asymmetric aziridination of α,β-unsaturated aldehydes.
    Deiana L; Dziedzic P; Zhao GL; Vesely J; Ibrahem I; Rios R; Sun J; Córdova A
    Chemistry; 2011 Jul; 17(28):7904-17. PubMed ID: 21611987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.