These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38623969)
1. In Situ Formed Robust Solid Electrolyte Interphase with Organic-Inorganic Hybrid Layer for Stable Zn Metal Anode. Lin C; Li TC; Wang P; Xu Y; Li DS; Sliva A; Yang HY Small Methods; 2024 Apr; ():e2400127. PubMed ID: 38623969 [TBL] [Abstract][Full Text] [Related]
2. Rational Design of an In-Situ Polymer-Inorganic Hybrid Solid Electrolyte Interphase for Realising Stable Zn Metal Anode under Harsh Conditions. Chen R; Zhang W; Guan C; Zhou Y; Gilmore I; Tang H; Zhang Z; Dong H; Dai Y; Du Z; Gao X; Zong W; Xu Y; Jiang P; Liu J; Zhao F; Li J; Wang X; He G Angew Chem Int Ed Engl; 2024 May; 63(21):e202401987. PubMed ID: 38526053 [TBL] [Abstract][Full Text] [Related]
3. A Synergistic Strategy of Organic Molecules Introduced a High Zn Wang N; Zhang Y; Yuan J; Hu L; Sun M; Li Z; Yao X; Weng X; Jia C ACS Appl Mater Interfaces; 2022 Oct; 14(42):48081-48090. PubMed ID: 36222419 [TBL] [Abstract][Full Text] [Related]
4. Electrolyte Design for In Situ Construction of Highly Zn Zeng X; Mao J; Hao J; Liu J; Liu S; Wang Z; Wang Y; Zhang S; Zheng T; Liu J; Rao P; Guo Z Adv Mater; 2021 Mar; 33(11):e2007416. PubMed ID: 33576130 [TBL] [Abstract][Full Text] [Related]
6. An efficient electrolyte additive of 1,3,6-hexanetricarbonitrile for high performance aqueous zinc-ion batteries. Wang R; Liu L; Huang S; Wu Y; Chen X; Liang Z; Xu J J Colloid Interface Sci; 2023 Sep; 646():950-958. PubMed ID: 37235940 [TBL] [Abstract][Full Text] [Related]
7. Electrical Double Layer and In Situ Polymerization SEI Enables High Reversible Zinc Metal Anode. Yin H; Wu H; Yang Y; Yao S; Han P; Shi Y; Liu R Small; 2024 Dec; 20(50):e2404367. PubMed ID: 39344599 [TBL] [Abstract][Full Text] [Related]
8. Tuning the Electrode/Electrolyte Interface Enabled by a Trifunctional Inorganic Oligomer Electrolyte Additive for Highly Stable and High-Rate Zn Anodes. Yu Y; Zhang P; Wang W; Liu J Small Methods; 2023 Oct; 7(10):e2300546. PubMed ID: 37350517 [TBL] [Abstract][Full Text] [Related]
9. In Situ Formation of Nitrogen-Rich Solid Electrolyte Interphase and Simultaneous Regulating Solvation Structures for Advanced Zn Metal Batteries. Wang D; Lv D; Liu H; Zhang S; Wang C; Wang C; Yang J; Qian Y Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202212839. PubMed ID: 36321938 [TBL] [Abstract][Full Text] [Related]
10. Suppressed Dissolution of Fluorine-Rich SEI Enables Highly Reversible Zinc Metal Anode for Stable Aqueous Zinc-Ion Batteries. Zhang Y; Shen S; Xi K; Li P; Kang Z; Zhao J; Yin D; Su Y; Zhao H; He G; Ding S Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202407067. PubMed ID: 38771481 [TBL] [Abstract][Full Text] [Related]
11. Regulating Inorganic and Organic Components to Build Amorphous-ZnF Liang G; Tang Z; Han B; Zhu J; Chen A; Li Q; Chen Z; Huang Z; Li X; Yang Q; Zhi C Adv Mater; 2023 May; 35(20):e2210051. PubMed ID: 36840372 [TBL] [Abstract][Full Text] [Related]
12. Synergistic Modulation of In-Situ Hybrid Interface Construction and pH Buffering Enabled Ultra-Stable Zinc Anode at High Current Density and Areal Capacity. Ouyang K; Chen S; Ling W; Cui M; Ma Q; Zhang K; Zhang P; Huang Y Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202311988. PubMed ID: 37743256 [TBL] [Abstract][Full Text] [Related]
13. Tailoring the Whole Deposition Process from Hydrated Zn Zong Q; Li R; Wang J; Zhang Q; Pan A Angew Chem Int Ed Engl; 2024 Oct; 63(41):e202409957. PubMed ID: 39034299 [TBL] [Abstract][Full Text] [Related]
14. In-Situ Solid Electrolyte Interface via Dual Reaction Strategy for Highly Reversible Zinc Anode. Xu P; Xu M; Zhang J; Zou J; Shi Y; Luo D; Wang D; Dou H; Chen Z Angew Chem Int Ed Engl; 2024 Oct; 63(41):e202407909. PubMed ID: 38993054 [TBL] [Abstract][Full Text] [Related]
15. Monolithic Phosphate Interphase for Highly Reversible and Stable Zn Metal Anode. Liu S; Vongsvivut JP; Wang Y; Zhang R; Yang F; Zhang S; Davey K; Mao J; Guo Z Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202215600. PubMed ID: 36446737 [TBL] [Abstract][Full Text] [Related]
16. Liu B; Yu L; Xiao Q; Zhang S; Li G; Ren K; Zhu Y; Wang C; Wang Q Chem Sci; 2024 Sep; 15(39):16118-24. PubMed ID: 39290586 [TBL] [Abstract][Full Text] [Related]
17. Constructing a Topologically Adaptable Solid Electrolyte Interphase for a Highly Reversible Zinc Anode. Yan T; Liu S; Li J; Tao M; Liang J; Du L; Cui Z; Song H ACS Nano; 2024 Jan; 18(4):3752-3762. PubMed ID: 38232329 [TBL] [Abstract][Full Text] [Related]
18. Dual-Parasitic Effect Enables Highly Reversible Zn Metal Anode for Ultralong 25,000 Cycles Aqueous Zinc-Ion Batteries. Ma C; Wang X; Lu W; Yang K; Chen N; Jiang H; Wang C; Yue H; Zhang D; Du F Nano Lett; 2024 Apr; 24(13):4020-4028. PubMed ID: 38517395 [TBL] [Abstract][Full Text] [Related]
19. Bi-containing Electrolyte Enables Robust and Li Ion Conductive Solid Electrolyte Interphase for Advanced Lithium Metal Anodes. Cui Y; Liu S; Liu B; Wang D; Zhong Y; Zhang X; Wang X; Xia X; Gu C; Tu J Front Chem; 2019; 7():952. PubMed ID: 32039160 [TBL] [Abstract][Full Text] [Related]
20. Solvation Modulation Enhances Anion-Derived Solid Electrolyte Interphase for Deep Cycling of Aqueous Zinc Metal Batteries. Wang D; Lv D; Peng H; Wang C; Liu H; Yang J; Qian Y Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202310290. PubMed ID: 37522818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]