BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38624102)

  • 21. Construction and bioanalytical applications of poly-adenine-mediated gold nanoparticle-based spherical nucleic acids.
    Shang Z; Deng Z; Yi X; Yang M; Nong X; Lin M; Xia F
    Anal Methods; 2023 Nov; 15(42):5564-5576. PubMed ID: 37861233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA-Origami-Based Assembly of Anisotropic Plasmonic Gold Nanostructures.
    Liu B; Song C; Zhu D; Wang X; Zhao M; Yang Y; Zhang Y; Su S; Shi J; Chao J; Liu H; Zhao Y; Fan C; Wang L
    Small; 2017 Jun; 13(23):. PubMed ID: 28452121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.
    Mao M; Zhou B; Tang X; Chen C; Ge M; Li P; Huang X; Yang L; Liu J
    Chemistry; 2018 Mar; 24(16):4094-4102. PubMed ID: 29327504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precise control over the silica shell thickness and finding the optimal thickness for the peak heat diffusion property of AuNR@SiO
    Yang W; Kaur S; Kim YD; Kim JM; Lee SH; Lim DK
    J Mater Chem B; 2022 Jan; 10(3):364-372. PubMed ID: 34825907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity.
    Liu K; Zheng Y; Lu X; Thai T; Lee NA; Bach U; Gooding JJ
    Langmuir; 2015 May; 31(17):4973-80. PubMed ID: 25874503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detoxification and functionalization of gold nanorods with organic polymers and their applications in cancer photothermal therapy.
    Jin N; Zhang Q; Yang M; Yang M
    Microsc Res Tech; 2019 Jun; 82(6):670-679. PubMed ID: 30767314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange.
    Wijaya A; Hamad-Schifferli K
    Langmuir; 2008 Sep; 24(18):9966-9. PubMed ID: 18717601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic Equilibrium in the Cetyltrimethylammonium Bromide-Au Nanoparticle Bilayer, and the Consequent Impact on the Formation of the Nanoparticle Protein Corona.
    Barbero F; Moriones OH; Bastús NG; Puntes V
    Bioconjug Chem; 2019 Nov; 30(11):2917-2930. PubMed ID: 31621309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gold Nanorods for Light-Based Lung Cancer Theranostics.
    Knights OB; McLaughlan JR
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30366384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces.
    Horiguchi Y; Honda K; Kato Y; Nakashima N; Niidome Y
    Langmuir; 2008 Oct; 24(20):12026-31. PubMed ID: 18759472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of cetyltrimethylammonium bromide to enhance the biocompatibility of Au nanorods synthesized by a modified seed mediated growth process.
    Choi BS; Iqbal M; Lee T; Kim YH; Tae G
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4670-4. PubMed ID: 19049082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and equilibrium effects of the surface passivant on the stability of Au nanorods.
    Merrill NA; Sethi M; Knecht MR
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7906-14. PubMed ID: 23919564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unstable reshaping of gold nanorods prepared by a wet chemical method in the presence of silver nitrate.
    Iqbal M; Tae G
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3355-9. PubMed ID: 17252764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement.
    Li W; Dong Y; Wang X; Li H; Xu D
    Biosens Bioelectron; 2015 Apr; 66():43-9. PubMed ID: 25460880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating Phospholipid-Functionalized Gold Nanorods for In Vivo Applications.
    Roach L; Booth ME; Ingram N; Paterson DA; Batchelor DVB; Moorcroft SCT; Bushby RJ; Critchley K; Coletta PL; Evans SD
    Small; 2021 Apr; 17(13):e2006797. PubMed ID: 33682366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods.
    Song J; Pu L; Zhou J; Duan B; Duan H
    ACS Nano; 2013 Nov; 7(11):9947-60. PubMed ID: 24073739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Encapsulating gold nanoparticles or nanorods in graphene oxide shells as a novel gene vector.
    Xu C; Yang D; Mei L; Lu B; Chen L; Li Q; Zhu H; Wang T
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2715-24. PubMed ID: 23477862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Citrate-Stabilized Gold Nanorods-Directed Osteogenic Differentiation of Multiple Cells.
    Zhang Y; Li Y; Liao W; Peng W; Qin J; Chen D; Zheng L; Yan W; Li L; Guo Z; Wang P; Jiang Q
    Int J Nanomedicine; 2021; 16():2789-2801. PubMed ID: 33880024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Citrate-stabilized gold nanorods.
    Mehtala JG; Zemlyanov DY; Max JP; Kadasala N; Zhao S; Wei A
    Langmuir; 2014 Nov; 30(46):13727-30. PubMed ID: 25254292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.
    Gorbunova MV; Apyari VV; Dmitrienko SG; Garshev AV
    Anal Chim Acta; 2016 Sep; 936():185-94. PubMed ID: 27566354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.