These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38624168)
1. Assessing Permutationally Invariant Polynomial and Symmetric Gradient Domain Machine Learning Potential Energy Surfaces for H Pandey P; Arandhara M; Houston PL; Qu C; Conte R; Bowman JM; Ramesh SG J Phys Chem A; 2024 Apr; 128(16):3212-3219. PubMed ID: 38624168 [TBL] [Abstract][Full Text] [Related]
2. No Headache for PIPs: A PIP Potential for Aspirin Runs Much Faster and with Similar Precision Than Other Machine-Learned Potentials. Houston PL; Qu C; Yu Q; Pandey P; Conte R; Nandi A; Bowman JM J Chem Theory Comput; 2024 Apr; 20(8):3008-3018. PubMed ID: 38593438 [TBL] [Abstract][Full Text] [Related]
3. Permutationally invariant polynomial regression for energies and gradients, using reverse differentiation, achieves orders of magnitude speed-up with high precision compared to other machine learning methods. Houston PL; Qu C; Nandi A; Conte R; Yu Q; Bowman JM J Chem Phys; 2022 Jan; 156(4):044120. PubMed ID: 35105104 [TBL] [Abstract][Full Text] [Related]
4. Full and fragmented permutationally invariant polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomerization saddle points. Nandi A; Qu C; Bowman JM J Chem Phys; 2019 Aug; 151(8):084306. PubMed ID: 31470729 [TBL] [Abstract][Full Text] [Related]
5. DFT-Based Permutationally Invariant Polynomial Potentials Capture the Twists and Turns of C Qu C; Houston PL; Allison T; Schneider BI; Bowman JM J Chem Theory Comput; 2024 Nov; 20(21):9339-9353. PubMed ID: 39431711 [TBL] [Abstract][Full Text] [Related]
6. Assessing Gaussian Process Regression and Permutationally Invariant Polynomial Approaches To Represent High-Dimensional Potential Energy Surfaces. Qu C; Yu Q; Van Hoozen BL; Bowman JM; Vargas-Hernández RA J Chem Theory Comput; 2018 Jul; 14(7):3381-3396. PubMed ID: 29847723 [TBL] [Abstract][Full Text] [Related]
7. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces. Homayoon Z J Chem Phys; 2014 Sep; 141(12):124311. PubMed ID: 25273441 [TBL] [Abstract][Full Text] [Related]
8. Permutationally invariant polynomial potential energy surfaces for tropolone and H and D atom tunneling dynamics. Houston P; Conte R; Qu C; Bowman JM J Chem Phys; 2020 Jul; 153(2):024107. PubMed ID: 32668941 [TBL] [Abstract][Full Text] [Related]
9. Global and Full-Dimensional Potential Energy Surfaces of the N Tao C; Yang J; Hong Q; Sun Q; Li J J Phys Chem A; 2023 May; 127(18):4027-4042. PubMed ID: 37128765 [TBL] [Abstract][Full Text] [Related]
10. An accurate full-dimensional permutationally invariant potential energy surface for the interaction between H Liu Y; Li J Phys Chem Chem Phys; 2019 Nov; 21(43):24101-24111. PubMed ID: 31657386 [TBL] [Abstract][Full Text] [Related]
11. A fragmented, permutationally invariant polynomial approach for potential energy surfaces of large molecules: Application to N-methyl acetamide. Qu C; Bowman JM J Chem Phys; 2019 Apr; 150(14):141101. PubMed ID: 30981221 [TBL] [Abstract][Full Text] [Related]
12. Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory. Nandi A; Qu C; Houston PL; Conte R; Bowman JM J Chem Phys; 2021 Feb; 154(5):051102. PubMed ID: 33557535 [TBL] [Abstract][Full Text] [Related]
13. Two-component, ab initio potential energy surface for CO Wang QK; Bowman JM J Chem Phys; 2017 Oct; 147(16):161714. PubMed ID: 29096492 [TBL] [Abstract][Full Text] [Related]
14. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl. Sharma AR; Braams BJ; Carter S; Shepler BC; Bowman JM J Chem Phys; 2009 May; 130(17):174301. PubMed ID: 19425770 [TBL] [Abstract][Full Text] [Related]
15. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions. Jiang B; Guo H J Chem Phys; 2014 Jul; 141(3):034109. PubMed ID: 25053303 [TBL] [Abstract][Full Text] [Related]
16. Ab Initio Potential for H Yu Q; Bowman JM J Chem Theory Comput; 2016 Nov; 12(11):5284-5292. PubMed ID: 27673756 [TBL] [Abstract][Full Text] [Related]
17. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system. Li J; Guo H J Chem Phys; 2015 Dec; 143(21):214304. PubMed ID: 26646879 [TBL] [Abstract][Full Text] [Related]
18. A Low-Order Permutationally Invariant Polynomial Approach to Learning Potential Energy Surfaces Using the Bond-Order Charge-Density Matrix: Application to C Gutierrez-Cardenas J; Gibbas BD; Whitaker K; Kaledin M; Kaledin AL J Phys Chem A; 2024 Sep; 128(36):7703-7713. PubMed ID: 39205486 [TBL] [Abstract][Full Text] [Related]
19. Permutationally Invariant Polynomial Basis for Molecular Energy Surface Fitting via Monomial Symmetrization. Xie Z; Bowman JM J Chem Theory Comput; 2010 Jan; 6(1):26-34. PubMed ID: 26614316 [TBL] [Abstract][Full Text] [Related]
20. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces. Qu C; Bowman JM Phys Chem Chem Phys; 2016 Sep; 18(36):24835-24840. PubMed ID: 27722444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]