These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38624182)

  • 1. Theoretical study of PdNi and PdCu clusters embedded on graphene modified by monovacancy and nitrogen doping.
    Ortiz-Vázquez EA; Montejo-Alvaro F; Cruz-Martínez H; Calaminici P
    J Comput Chem; 2024 Jul; 45(20):1744-1749. PubMed ID: 38624182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability, Energetic, and Reactivity Properties of NiPd Alloy Clusters Deposited on Graphene with Defects: A Density Functional Theory Study.
    Martínez-Vargas A; Vásquez-López A; Antonio-Ruiz CD; Cruz-Martínez H; Medina DI; Montejo-Alvaro F
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pd
    Sánchez-Rodríguez EP; Santos-López G; Cruz-Martínez H; Calaminici P; Medina DI
    J Mol Model; 2023 Jul; 29(8):252. PubMed ID: 37458868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation of double nitrogen doping on graphene.
    Herath D; Dinadayalane T
    J Mol Model; 2017 Dec; 24(1):26. PubMed ID: 29273911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Li diffusion through doped and defected graphene.
    Das D; Kim S; Lee KR; Singh AK
    Phys Chem Chem Phys; 2013 Sep; 15(36):15128-34. PubMed ID: 23925460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene.
    Wan W; Wang H
    Materials (Basel); 2015 Sep; 8(9):6163-6178. PubMed ID: 28793558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes.
    Kuamit T; Ratanasak M; Rungnim C; Parasuk V
    J Mol Model; 2017 Nov; 23(12):355. PubMed ID: 29177727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction.
    Wu P; Du P; Zhang H; Cai C
    Phys Chem Chem Phys; 2013 May; 15(18):6920-8. PubMed ID: 23549636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique reactivity of Fe nanoparticles-defective graphene composites toward NH(x) (x = 0, 1, 2, 3) adsorption: a first-principles study.
    Liu X; Meng C; Han Y
    Phys Chem Chem Phys; 2012 Nov; 14(43):15036-45. PubMed ID: 23034526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-Scale Friction on Monovacancy-Defective Graphene and Single-Layer Molybdenum-Disulfide by Numerical Analysis.
    Pang H; Wang H; Li M; Gao C
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31906488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT calculation in design of near-infrared absorbing nitrogen-doped graphene quantum dots.
    Chan SC; Cheng YL; Chang BK; Hong CW
    Phys Chem Chem Phys; 2022 Jan; 24(3):1580-1589. PubMed ID: 34942640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Study of CO Adsorption Interactions with Cr-Doped Tungsten Oxide/Graphene Composites for Gas Sensor Application.
    Syaahiran MA; Mahadi AH; Lim CM; Kooh MRR; Chau YC; Chiang HP; Thotagamuge R
    ACS Omega; 2022 Jan; 7(1):528-539. PubMed ID: 35036721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical reactivity and band-gap opening of graphene doped with gallium, germanium, arsenic, and selenium atoms.
    Denis PA
    Chemphyschem; 2014 Dec; 15(18):3994-4000. PubMed ID: 25349028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the work function of graphene via defects, nitrogen-doping and hydrogenation: A first principles study.
    Dimov N; Staykov A; Kusdhany MIM; Lyth SM
    Nanotechnology; 2023 Jul; 34(41):. PubMed ID: 37490587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic interaction between nitrogen atoms in doped graphene.
    Tison Y; Lagoute J; Repain V; Chacon C; Girard Y; Rousset S; Joucken F; Sharma D; Henrard L; Amara H; Ghedjatti A; Ducastelle F
    ACS Nano; 2015 Jan; 9(1):670-8. PubMed ID: 25558891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical reactivity of graphene doped with 3d transition metals: nothing compares to a single vacancy.
    Denis PA
    J Mol Model; 2024 Mar; 30(4):96. PubMed ID: 38446327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation and properties of Pt4 clusters on the defective graphene support.
    Tang Y; Yang Z; Dai X
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1612-5. PubMed ID: 23646692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.
    Feng S; Dos Santos MC; Carvalho BR; Lv R; Li Q; Fujisawa K; Elías AL; Lei Y; Perea-López N; Endo M; Pan M; Pimenta MA; Terrones M
    Sci Adv; 2016 Jul; 2(7):e1600322. PubMed ID: 27532043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.