These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38624182)

  • 21. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
    Lazar P; Zbořil R; Pumera M; Otyepka M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14231-5. PubMed ID: 24912566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach.
    Lee JH; Kwon SH; Kwon S; Cho M; Kim KH; Han TH; Lee SG
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A first-principles study of Ni
    Cervantes-Flores A; Cruz-Martínez H; Solorza-Feria O; Calaminici P
    J Mol Model; 2017 May; 23(5):161. PubMed ID: 28409287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring.
    Zhang HP; Luo XG; Lin XY; Zhang YP; Tang PP; Lu X; Tang Y
    J Mol Graph Model; 2015 Sep; 61():224-30. PubMed ID: 26295685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuneable effects of pyrrolic N and pyridinic N on the enhanced field emission properties of nitrogen-doped graphene.
    Meng G; Zhan F; She J; Xie J; Zheng Q; Cheng Y; Yin Z
    Nanoscale; 2023 Oct; 15(39):15994-16001. PubMed ID: 37766512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Density functional theory study of palladium cluster adsorption on a graphene support.
    Hussain R; Saeed M; Mehboob MY; Khan SU; Usman Khan M; Adnan M; Ahmed M; Iqbal J; Ayub K
    RSC Adv; 2020 May; 10(35):20595-20607. PubMed ID: 35517764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boron and pyridinic nitrogen-doped graphene as potential catalysts for rechargeable non-aqueous sodium-air batteries.
    Benti NE; Tiruye GA; Mekonnen YS
    RSC Adv; 2020 Jun; 10(36):21387-21398. PubMed ID: 35518781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of graphene with Au
    Murugesan R; Meng R; de Volder A; Keijers W; Janssens E; van de Vondel J; Afanasiev V; Houssa M
    J Phys Condens Matter; 2022 Aug; 34(40):. PubMed ID: 35856847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monovacancy-induced magnetism in graphene bilayers.
    Choi S; Jeong BW; Kim S; Kim G
    J Phys Condens Matter; 2008 Jun; 20(23):235220. PubMed ID: 21694311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomistic mechanisms of codoping-induced p- to n-type conversion in nitrogen-doped graphene.
    Kim HS; Kim HS; Kim SS; Kim YH
    Nanoscale; 2014 Dec; 6(24):14911-8. PubMed ID: 25363732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Evolution and Electronic Properties of Two Sulfur Atom-Doped Boron Clusters.
    Li SX; Yang YJ; Chen DL
    ACS Omega; 2023 Aug; 8(33):30757-30767. PubMed ID: 37636960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Atomistic View of Platinum Cluster Growth on Pristine and Defective Graphene Supports.
    Bord J; Kirchhoff B; Baldofski M; Jung C; Jacob T
    Small; 2023 Mar; 19(10):e2207484. PubMed ID: 36650999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyridinic Nitrogen-Doped Graphene Nanoshells Boost the Catalytic Efficiency of Palladium Nanoparticles for the N-Allylation Reaction.
    Li X; Zhao Q; Feng X; Pan L; Wu Z; Wu X; Ma T; Liu J; Pan Y; Song Y; Wu M
    ChemSusChem; 2019 Feb; 12(4):858-865. PubMed ID: 30600929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene.
    Błoński P; Tuček J; Sofer Z; Mazánek V; Petr M; Pumera M; Otyepka M; Zbořil R
    J Am Chem Soc; 2017 Mar; 139(8):3171-3180. PubMed ID: 28110530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials.
    Cruz-Martínez H; García-Hilerio B; Montejo-Alvaro F; Gazga-Villalobos A; Rojas-Chávez H; Sánchez-Rodríguez EP
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 1,1-Dimethylhydrazine adsorption on intrinsic, vacancy, and N-doped graphene: a first-principle study.
    Wang HY; Jia Y; Hao ZW; Xiao JX
    J Mol Model; 2022 Jul; 28(8):227. PubMed ID: 35869173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronegativity-dependent Pt anchoring and molecule adsorption for graphene-based supported Pt single atom.
    Wang S; Cheng B; Fang X; Cao M; Xu X; Wang X
    J Mol Model; 2024 Apr; 30(5):138. PubMed ID: 38639819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insight into Adsorption of C₂H₂ and H₂ on Doped Graphene with Nonmetallic Atom (N, P, S): A Density Functional Theory Study.
    Huang L; Chu W; Zhou X; Zhou Y; Xue Y
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1288-1295. PubMed ID: 31383130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications.
    Velázquez-López LF; Pacheco-Ortin SM; Mejía-Olvera R; Agacino-Valdés E
    J Mol Model; 2019 Mar; 25(4):91. PubMed ID: 30852668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.
    Mudedla SK; Balamurugan K; Kamaraj M; Subramanian V
    Phys Chem Chem Phys; 2016 Jan; 18(1):295-309. PubMed ID: 26607270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.