These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38624503)

  • 61. Derivation of motor vehicle tailpipe particle emission factors suitable for modelling urban fleet emissions and air quality assessments.
    Keogh DU; Kelly J; Mengersen K; Jayaratne R; Ferreira L; Morawska L
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):724-39. PubMed ID: 19557449
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of motor vehicle lifetime extension in climate change policy.
    Kagawa S; Nansai K; Kondo Y; Hubacek K; Suh S; Minx J; Kudoh Y; Tasaki T; Nakamura S
    Environ Sci Technol; 2011 Feb; 45(4):1184-91. PubMed ID: 21265568
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comprehensive approach to national tire wear emissions: Challenges and implications.
    Polukarova M; Hjort M; Gustafsson M
    Sci Total Environ; 2024 May; 924():171391. PubMed ID: 38431172
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Toxicological evaluation of exhaust emissions from light-duty vehicles using different fuel alternatives in sub-freezing conditions.
    Hakkarainen H; Aakko-Saksa P; Sainio M; Ihantola T; Rönkkö TJ; Koponen P; Rönkkö T; Jalava PI
    Part Fibre Toxicol; 2020 May; 17(1):17. PubMed ID: 32460782
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Monitoring Euro 6 diesel passenger cars NO
    Söderena P; Laurikko J; Weber C; Tilli A; Kuikka K; Kousa A; Väkevä O; Venho A; Haaparanta S; Nuottimäki J
    Sci Total Environ; 2020 Dec; 746():140971. PubMed ID: 32768777
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evolution of the crashworthiness and aggressivity of the Spanish car fleet.
    Gómez Méndez A; Aparicio Izquierdo F; Arenas Ramírez B
    Accid Anal Prev; 2010 Nov; 42(6):1621-31. PubMed ID: 20728610
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electric vehicles in China: emissions and health impacts.
    Ji S; Cherry CR; J Bechle M; Wu Y; Marshall JD
    Environ Sci Technol; 2012 Feb; 46(4):2018-24. PubMed ID: 22201325
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Life Cycle Assessment of a novel functionally integrated e-axle compared with powertrains for electric and conventional passenger cars.
    Koroma MS; Costa D; Puricelli S; Messagie M
    Sci Total Environ; 2023 Dec; 904():166860. PubMed ID: 37673260
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Achieving deep cuts in the carbon intensity of U.S. automobile transportation by 2050: complementary roles for electricity and biofuels.
    Scown CD; Taptich M; Horvath A; McKone TE; Nazaroff WW
    Environ Sci Technol; 2013 Aug; 47(16):9044-52. PubMed ID: 23906086
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantifying the multiple environmental, health, and economic benefits from the electrification of the Delhi public transport bus fleet, estimating a district-wise near roadway avoided PM
    Bhat TH; Farzaneh H
    J Environ Manage; 2022 Nov; 321():116027. PubMed ID: 36104892
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A machine learning approach to analyse and predict the electric cars scenario: The Italian case.
    Miconi F; Dimitri GM
    PLoS One; 2023; 18(1):e0279040. PubMed ID: 36662837
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Hybrid-Electric Passenger Car Carbon Dioxide and Fuel Consumption Benefits Based on Real-World Driving.
    Holmén BA; Sentoff KM
    Environ Sci Technol; 2015 Aug; 49(16):10199-208. PubMed ID: 26171922
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The spatial analyses of consumption-based CO
    Mahmood H
    Environ Sci Pollut Res Int; 2022 Jul; 29(32):48301-48311. PubMed ID: 35190979
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fully electric and plug-in hybrid cars - An analysis of learning rates, user costs, and costs for mitigating CO
    Weiss M; Zerfass A; Helmers E
    J Clean Prod; 2019 Mar; 212():1478-1489. PubMed ID: 30828137
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Towards zero pollution vehicles by advanced fuels and exhaust aftertreatment technologies.
    Saarikoski S; Järvinen A; Markkula L; Aurela M; Kuittinen N; Hoivala J; Barreira LMF; Aakko-Saksa P; Lepistö T; Marjanen P; Timonen H; Hakkarainen H; Jalava P; Rönkkö T
    Environ Pollut; 2024 Apr; 347():123665. PubMed ID: 38432344
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A; Azevedo IM; Michalek JJ
    Environ Sci Technol; 2016 Mar; 50(5):2165-74. PubMed ID: 26867100
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Climate effects of emission standards: the case for gasoline and diesel cars.
    Tanaka K; Berntsen T; Fuglestvedt JS; Rypdal K
    Environ Sci Technol; 2012 May; 46(9):5205-13. PubMed ID: 22436085
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Methane emissions from vehicles.
    Nam EK; Jensen TE; Wallington TJ
    Environ Sci Technol; 2004 Apr; 38(7):2005-10. PubMed ID: 15112800
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An Empirical Study on the Relationship between New Energy Vehicle' Export Sophistication and Industrial Structure Upgrading in China.
    Cao X; Rasiah R; Furuoka F
    J Environ Public Health; 2022; 2022():8914898. PubMed ID: 36120149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.