These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38625086)

  • 1. Interplay between the oxidation process and cytotoxic effects of antimonene nanomaterials.
    Congost-Escoin P; Lucherelli MA; Oestreicher V; García-Lainez G; Alcaraz M; Mizrahi M; Varela M; Andreu I; Abellán G
    Nanoscale; 2024 May; 16(20):9754-9769. PubMed ID: 38625086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity of Shear Exfoliated Pnictogen (As, Sb, Bi) Nanosheets.
    Chia HL; Latiff NM; Gusmão R; Sofer Z; Pumera M
    Chemistry; 2019 Feb; 25(9):2242-2249. PubMed ID: 30637810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine.
    Liu C; Shin J; Son S; Choe Y; Farokhzad N; Tang Z; Xiao Y; Kong N; Xie T; Kim JS; Tao W
    Chem Soc Rev; 2021 Mar; 50(4):2260-2279. PubMed ID: 33367452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry of two-dimensional pnictogens: emerging post-graphene materials for advanced applications.
    Lucherelli MA; Oestreicher V; Alcaraz M; Abellán G
    Chem Commun (Camb); 2023 May; 59(43):6453-6474. PubMed ID: 37084083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine.
    Carrasco JA; Congost-Escoin P; Assebban M; Abellán G
    Chem Soc Rev; 2023 Feb; 52(4):1288-1330. PubMed ID: 36744431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application and prospect of antimonene: A new two-dimensional nanomaterial in cancer theranostics.
    Yang X; Wu R; Xu N; Li X; Dong N; Ling G; Liu Y; Zhang P
    J Inorg Biochem; 2020 Nov; 212():111232. PubMed ID: 32889128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective.
    Yu X; Liu X; Yang K; Chen X; Li W
    ACS Nano; 2021 Feb; 15(2):2038-2067. PubMed ID: 33486944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semimetal nanomaterials of antimony as highly efficient agent for photoacoustic imaging and photothermal therapy.
    Li W; Rong P; Yang K; Huang P; Sun K; Chen X
    Biomaterials; 2015 Mar; 45():18-26. PubMed ID: 25662491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent Functionalization of Antimonene and Bismuthene Nanosheets.
    Ayyub MM; Barua M; Acharya S; Rao CNR
    Small; 2022 Sep; 18(38):e2203554. PubMed ID: 35989100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sb(III) oxidation by iodate in seawater: a cautionary tale.
    Quentel F; Filella M; Elleouet C; Madec CL
    Sci Total Environ; 2006 Feb; 355(1-3):259-63. PubMed ID: 15878781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides.
    Bai Y; Jefferson WA; Liang J; Yang T; Qu J
    J Environ Sci (China); 2017 Apr; 54():126-134. PubMed ID: 28391920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission electron microscopy investigation of Sb-doped ZnO nanoribbons and Zn7Sb2O12 branched ZnO nanoribbon structure.
    Zou K; Zhou S; Zhang X; Qi X; Duan X
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2200-3. PubMed ID: 17025150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimony speciation, phytochelatin stimulation and toxicity in plants.
    Abbasi S; Lamb DT; Choppala G; Burton ED; Megharaj M
    Environ Pollut; 2022 Jul; 305():119305. PubMed ID: 35430314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization mechanism of antimony by applying zirconium-manganese oxide in soil.
    Rong Q; Nong X; Zhang C; Zhong K; Zhao H
    Sci Total Environ; 2022 Jun; 823():153435. PubMed ID: 35092780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimony oxidation and sorption behavior on birnessites with different properties (δ-MnO
    Sun Q; Cui PX; Liu C; Peng SM; Alves ME; Zhou DM; Shi ZQ; Wang YJ
    Environ Pollut; 2019 Mar; 246():990-998. PubMed ID: 31159148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimony redox processes in the environment: A critical review of associated oxidants and reductants.
    Zhang Y; O'Loughlin EJ; Kwon MJ
    J Hazard Mater; 2022 Jun; 431():128607. PubMed ID: 35359101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-chain fatty acids induced lung tumor cell death and increased peripheral blood CD4+ T cells in NSCLC and control patients ex vivo.
    Thome CD; Tausche P; Hohenberger K; Yang Z; Krammer S; Trufa DI; Sirbu H; Schmidt J; Finotto S
    Front Immunol; 2024; 15():1328263. PubMed ID: 38650948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway.
    Zhang Y; Qiao M; Huang Y; Zou Y; Liu Z; Tao L; Li Y; Dong CL; Wang S
    Research (Wash D C); 2020; 2020():5487237. PubMed ID: 32266330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity.
    Kataoka T; Mitsunobu S; Hamamura N
    Microbes Environ; 2018 Jul; 33(2):214-221. PubMed ID: 29887548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.