These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38625092)

  • 1. Secondary Conformational Checkpoint in CRISPR-Cas9.
    Zhao S; Liu J; Zuo Z
    J Chem Theory Comput; 2024 May; 20(9):3440-3448. PubMed ID: 38625092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
    Babu K; Kathiresan V; Kumari P; Newsom S; Parameshwaran HP; Chen X; Liu J; Qin PZ; Rajan R
    Biochemistry; 2021 Dec; 60(49):3783-3800. PubMed ID: 34757726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9.
    Dagdas YS; Chen JS; Sternberg SH; Doudna JA; Yildiz A
    Sci Adv; 2017 Aug; 3(8):eaao0027. PubMed ID: 28808686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time observation of flexible domain movements in CRISPR-Cas9.
    Osuka S; Isomura K; Kajimoto S; Komori T; Nishimasu H; Shima T; Nureki O; Uemura S
    EMBO J; 2018 May; 37(10):. PubMed ID: 29650679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain.
    Palermo G; Chen JS; Ricci CG; Rivalta I; Jinek M; Batista VS; Doudna JA; McCammon JA
    Q Rev Biophys; 2018; 51():. PubMed ID: 30555184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects.
    Maghsoud Y; Jayasinghe-Arachchige VM; Kumari P; Cisneros GA; Liu J
    J Chem Inf Model; 2023 Nov; 63(21):6834-6850. PubMed ID: 37877218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional insights into the
    Zuo Z; Zolekar A; Babu K; Lin VJ; Hayatshahi HS; Rajan R; Wang YC; Liu J
    Elife; 2019 Jul; 8():. PubMed ID: 31361218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time observation of Cas9 postcatalytic domain motions.
    Wang Y; Mallon J; Wang H; Singh D; Hyun Jo M; Hua B; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R-loop formation and conformational activation mechanisms of Cas9.
    Pacesa M; Loeff L; Querques I; Muckenfuss LM; Sawicka M; Jinek M
    Nature; 2022 Sep; 609(7925):191-196. PubMed ID: 36002571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.
    Zheng W
    Proteins; 2017 Feb; 85(2):342-353. PubMed ID: 27936513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9.
    Zhu X; Clarke R; Puppala AK; Chittori S; Merk A; Merrill BJ; Simonović M; Subramaniam S
    Nat Struct Mol Biol; 2019 Aug; 26(8):679-685. PubMed ID: 31285607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Dynamics of Cas9 HNH Domain Catalytic State.
    Zuo Z; Liu J
    Sci Rep; 2017 Dec; 7(1):17271. PubMed ID: 29222528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single molecule methods for studying CRISPR Cas9-induced DNA unwinding.
    Okafor IC; Choi J; Ha T
    Methods; 2022 Aug; 204():319-326. PubMed ID: 34767923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and dynamic insights into the HNH nuclease of divergent Cas9 species.
    Belato HB; D'Ordine AM; Nierzwicki L; Arantes PR; Jogl G; Palermo G; Lisi GP
    J Struct Biol; 2022 Mar; 214(1):107814. PubMed ID: 34871741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance.
    Babu K; Amrani N; Jiang W; Yogesha SD; Nguyen R; Qin PZ; Rajan R
    Biochemistry; 2019 Apr; 58(14):1905-1917. PubMed ID: 30916546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring alternative catalytic mechanisms of the Cas9 HNH domain.
    Zhao LN; Mondal D; Warshel A
    Proteins; 2020 Feb; 88(2):260-264. PubMed ID: 31390092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.
    Palermo G; Miao Y; Walker RC; Jinek M; McCammon JA
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7260-7265. PubMed ID: 28652374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics.
    East KW; Newton JC; Morzan UN; Narkhede YB; Acharya A; Skeens E; Jogl G; Batista VS; Palermo G; Lisi GP
    J Am Chem Soc; 2020 Jan; 142(3):1348-1358. PubMed ID: 31885264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells.
    Donohoue PD; Pacesa M; Lau E; Vidal B; Irby MJ; Nyer DB; Rotstein T; Banh L; Toh MS; Gibson J; Kohrs B; Baek K; Owen ALG; Slorach EM; van Overbeek M; Fuller CK; May AP; Jinek M; Cameron P
    Mol Cell; 2021 Sep; 81(17):3637-3649.e5. PubMed ID: 34478654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.
    Zeng Y; Cui Y; Zhang Y; Zhang Y; Liang M; Chen H; Lan J; Song G; Lou J
    Nucleic Acids Res; 2018 Jan; 46(1):350-361. PubMed ID: 29145633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.