These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38625094)
1. Study on the hemodynamic effects of different pulsatile working modes of a rotary blood pump using a microfluidic platform that realizes Liang L; Wang X; Chen D; Sethu P; Giridharan GA; Wang Y; Wang Y; Qin KR Lab Chip; 2024 Apr; 24(9):2428-2439. PubMed ID: 38625094 [TBL] [Abstract][Full Text] [Related]
2. Development of Wang X; Liang L; Giridharan GA; Sethu P; Wang Y; Qin KR; Qu P; Wang Y Analyst; 2024 Jun; 149(13):3661-3672. PubMed ID: 38819086 [TBL] [Abstract][Full Text] [Related]
3. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations. Chin LK; Yu JQ; Fu Y; Yu T; Liu AQ; Luo KQ Lab Chip; 2011 Jun; 11(11):1856-63. PubMed ID: 21373653 [TBL] [Abstract][Full Text] [Related]
4. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system. Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256 [TBL] [Abstract][Full Text] [Related]
5. Haemodynamic Effect of Left Atrial and Left Ventricular Cannulation with a Rapid Speed Modulated Rotary Blood Pump During Rest and Exercise: Investigation in a Numerical Cardiorespiratory Model. Wu EL; Fresiello L; Kleinhyer M; Meyns B; Fraser JF; Tansley G; Gregory SD Cardiovasc Eng Technol; 2020 Aug; 11(4):350-361. PubMed ID: 32557185 [TBL] [Abstract][Full Text] [Related]
6. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728 [TBL] [Abstract][Full Text] [Related]
7. Numerical simulation analysis of multi-scale computational fluid dynamics on hemodynamic parameters modulated by pulsatile working modes for the centrifugal and axial left ventricular assist devices. Huo M; Giridharan GA; Sethu P; Qu P; Qin K; Wang Y Comput Biol Med; 2024 Feb; 169():107788. PubMed ID: 38091724 [TBL] [Abstract][Full Text] [Related]
8. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. Vandenberghe S; Segers P; Antaki JF; Meyns B; Verdonck PR ASAIO J; 2005; 51(6):711-8. PubMed ID: 16340355 [TBL] [Abstract][Full Text] [Related]
9. Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller. Kleinheyer M; Timms DL; Tansley GD; Nestler F; Greatrex NA; Frazier OH; Cohn WE Artif Organs; 2016 Sep; 40(9):824-33. PubMed ID: 27645393 [TBL] [Abstract][Full Text] [Related]
10. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility. Ng BC; Kleinheyer M; Smith PA; Timms D; Cohn WE; Lim E PLoS One; 2018; 13(4):e0195975. PubMed ID: 29677212 [TBL] [Abstract][Full Text] [Related]
11. Effects on the pulmonary hemodynamics and gas exchange with a speed modulated right ventricular assist rotary blood pump: a numerical study. Huang F; Gou Z; Fu Y; Ruan X Biomed Eng Online; 2018 Oct; 17(1):142. PubMed ID: 30342521 [TBL] [Abstract][Full Text] [Related]
12. An apparatus for studying the response of cultured endothelial cells to stresses. Shen L; Qiao A; Ding H; Mo G; Xu G; Du Y; Li M; Chen Z; Zeng Y Australas Phys Eng Sci Med; 2006 Jun; 29(2):196-202. PubMed ID: 16845925 [TBL] [Abstract][Full Text] [Related]
13. Effect of rotary blood pump pulsatility on potential parameters of blood compatibility and thrombosis in inflow cannula tips. Wong KC; Büsen M; Benzinger C; Gäng R; Bezema M; Greatrex N; Schmitz-Rode T; Steinseifer U Int J Artif Organs; 2014 Dec; 37(12):875-87. PubMed ID: 25450321 [TBL] [Abstract][Full Text] [Related]
15. Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure. Soucy KG; Giridharan GA; Choi Y; Sobieski MA; Monreal G; Cheng A; Schumer E; Slaughter MS; Koenig SC J Heart Lung Transplant; 2015 Jan; 34(1):122-131. PubMed ID: 25447573 [TBL] [Abstract][Full Text] [Related]
16. Pulsatile control of rotary blood pumps: Does the modulation waveform matter? Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246 [TBL] [Abstract][Full Text] [Related]
17. Speed Modulation of the HeartWare HVAD to Assess In Vitro Hemocompatibility of Pulsatile and Continuous Flow Regimes in a Rotary Blood Pump. Horobin JT; Simmonds MJ; Nandakumar D; Gregory SD; Tansley G; Pauls JP; Girnghuber A; Balletti N; Fraser JF Artif Organs; 2018 Sep; 42(9):879-890. PubMed ID: 29726019 [TBL] [Abstract][Full Text] [Related]
18. In vitro hemodynamic evaluation of a novel pulsatile extracorporeal life support system: impact of perfusion modes and circuit components on energy loss. Wang S; Kunselman AR; Clark JB; Ündar A Artif Organs; 2015 Jan; 39(1):59-66. PubMed ID: 25586773 [TBL] [Abstract][Full Text] [Related]
19. Investigation of hemodynamics in the assisted isolated porcine heart. Granegger M; Mahr S; Horvat J; Aigner P; Roehrich M; Stoiber M; Plasenzotti R; Zimpfer D; Schima H; Moscato F Int J Artif Organs; 2013 Dec; 36(12):878-86. PubMed ID: 24362896 [TBL] [Abstract][Full Text] [Related]
20. Mathematical evaluation of cardiac beat synchronization control used for a rotary blood pump. Ogawa D; Kobayashi S; Yamazaki K; Motomura T; Nishimura T; Shimamura J; Tsukiya T; Mizuno T; Takewa Y; Tatsumi E J Artif Organs; 2019 Dec; 22(4):276-285. PubMed ID: 31327062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]