These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38625123)

  • 1. To increase or to decrease the price? Managing public transport queues during COVID-19 in the presence of strategic commuters.
    Srivatsa Srinivas S
    Public Transp; 2023; 15(1):275-285. PubMed ID: 38625123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of physical distancing due to novel coronavirus (SARS-CoV-2) on daily travel for work during transition to lockdown.
    Pawar DS; Yadav AK; Akolekar N; Velaga NR
    Transp Res Interdiscip Perspect; 2020 Sep; 7():100203. PubMed ID: 34173467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A data-driven analysis of the potential of public transport for German commuters using accessibility indicators.
    Mocanu T; Joshi J; Winkler C
    Eur Transp Res Rev; 2021; 13(1):54. PubMed ID: 38624789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of commuter pedestrian traffic on the use of stairs in an urban setting.
    Andersen RE; Bauman AE
    Am J Health Promot; 2011; 26(1):49-51. PubMed ID: 21879943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of COVID-19: A radical modal shift from public to private transport mode.
    Das S; Boruah A; Banerjee A; Raoniar R; Nama S; Maurya AK
    Transp Policy (Oxf); 2021 Aug; 109():1-11. PubMed ID: 36570699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Travel mode preferences among German commuters over the course of COVID-19 pandemic.
    Ferreira S; Amorim M; Lobo A; Kern M; Fanderl N; Couto A
    Transp Policy (Oxf); 2022 Sep; 126():55-64. PubMed ID: 35874046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commuter exposure to particulate matter in urban public transportation of Xi'an, China.
    Qiu Z; Cao H
    J Environ Health Sci Eng; 2020 Dec; 18(2):451-462. PubMed ID: 33312574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A paradigm shift in urban mobility: Policy insights from travel before and after COVID-19 to seize the opportunity.
    Thombre A; Agarwal A
    Transp Policy (Oxf); 2021 Sep; 110():335-353. PubMed ID: 36567700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability in baseline travel behaviour as a predictor of changes in commuting by active travel, car and public transport: a natural experimental study.
    Heinen E; Ogilvie D
    J Transp Health; 2016 Mar; 3(1):77-85. PubMed ID: 27200265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport priorities, risk perception and worry associated with mode use and preferences among Norwegian commuters.
    Nordfjærn T; Simşekoğlu Ö; Lind HB; Jørgensen SH; Rundmo T
    Accid Anal Prev; 2014 Nov; 72():391-400. PubMed ID: 25129446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are Latin American cycling commuters "at risk"? A comparative study on cycling patterns, behaviors, and crashes with non-commuter cyclists.
    Useche SA; Esteban C; Alonso F; Montoro L
    Accid Anal Prev; 2021 Feb; 150():105915. PubMed ID: 33276186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commuter types identified using clustering and their associations with source-specific PM
    Krall JR; Moore KD; Joannidis C; Lee YC; Pollack AZ; McCombs M; Thornburg J; Balachandran S
    Environ Res; 2021 Sep; 200():111419. PubMed ID: 34087193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on commuters' public transportation mode choice behavior in river valley-type cities considering terrain spatial perception: evidence from Lanzhou, China.
    Fan M; Qi J; Zheng X; Shang H; Kan J
    Sci Rep; 2024 Jun; 14(1):13237. PubMed ID: 38853159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty.
    Bertaglia G; Boscheri W; Dimarco G; Pareschi L
    Math Biosci Eng; 2021 Aug; 18(5):7028-7059. PubMed ID: 34517570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the impacts of COVID-19 on travel behavior and mode preferences.
    Abdullah M; Dias C; Muley D; Shahin M
    Transp Res Interdiscip Perspect; 2020 Nov; 8():100255. PubMed ID: 34173481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Mode of Transport in Daily Mobility during the COVID-19 Pandemic Using a Multinomial Logistic Regression Model.
    Mazanec J; Harantová V; Štefancová V; Brůhová Foltýnová H
    Int J Environ Res Public Health; 2023 Mar; 20(5):. PubMed ID: 36901610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in commuting behaviours in response to the COVID-19 pandemic in the UK.
    Harrington DM; Hadjiconstantinou M
    J Transp Health; 2022 Mar; 24():101313. PubMed ID: 34900585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport preferences and dilemmas in the post-lockdown (COVID-19) period: Findings from a qualitative study of young commuters in Dhaka, Bangladesh.
    Jamal S; Chowdhury S; Newbold KB
    Case Stud Transp Policy; 2022 Mar; 10(1):406-416. PubMed ID: 35036315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigating long queues and waiting times with service resetting.
    Bonomo OL; Pal A; Reuveni S
    PNAS Nexus; 2022 Jul; 1(3):pgac070. PubMed ID: 36741459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of infection risk on customers' joining strategies.
    Perlman Y; Yechiali U
    Saf Sci; 2021 Jun; 138():105194. PubMed ID: 36568285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.