BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 38625345)

  • 1. A comprehensive review on fused deposition modelling of polylactic acid.
    Sandanamsamy L; Harun WSW; Ishak I; Romlay FRM; Kadirgama K; Ramasamy D; Idris SRA; Tsumori F
    Prog Addit Manuf; 2022 Oct; ():1-25. PubMed ID: 38625345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling.
    Hsueh MH; Lai CJ; Wang SH; Zeng YS; Hsieh CH; Pan CY; Huang WC
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34072038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-Printed Fiber-Reinforced Polymer Composites by Fused Deposition Modelling (FDM): Fiber Length and Fiber Implementation Techniques.
    Ismail KI; Yap TC; Ahmed R
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing.
    Bardot M; Schulz MD
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33371307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed.
    Yang TC; Yeh CH
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32545359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles.
    Wu L; Park J; Kamaki Y; Kim B
    Microsyst Nanoeng; 2021; 7():58. PubMed ID: 34567770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Self-Polymerized Polydopamine Coating on Mechanical Properties of Polylactic Acid (PLA)-Kenaf Fiber (KF) in Fused Deposition Modeling (FDM).
    Hamat S; Ishak MR; Salit MS; Yidris N; Showkat Ali SA; Hussin MS; Abdul Manan MS; Ahamad Suffin MQZ; Ibrahim M; Mohd Khalil AN
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FDM Printability of PLA Based-Materials: The Key Role of the Rheological Behavior.
    Arrigo R; Frache A
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation of the additive manufacturing parameters of polylactic acid (PLA) cellular structures for biomedical applications.
    Myers D; Abdel-Wahab A; Hafeez F; Kovacev N; Essa K
    J Mech Behav Biomed Mater; 2022 Dec; 136():105447. PubMed ID: 36272224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Raster Angle and Moisture Content on the Mechanical Properties of PLA Parts Produced by Fused Deposition Modeling.
    Algarni M
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33445624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of CaCO
    Zarei M; Hosseini Nikoo MM; Alizadeh R; Askarinya A
    J Mech Behav Biomed Mater; 2024 Jan; 149():106239. PubMed ID: 37984285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the Influence of Processing Parameters on the Specific Tensile Strength of FDM Additive Manufactured PET-G and PLA Materials.
    Bembenek M; Kowalski Ł; Kosoń-Schab A
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing.
    Ou-Yang Q; Guo B; Xu J
    ACS Omega; 2018 Oct; 3(10):14309-14317. PubMed ID: 31458121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Aging on Tensile and Chemical Properties of Polylactic Acid and Polylactic Acid-Like Polymer Materials for Additive Manufacturing.
    Golubović Z; Bojović B; Kirin S; Milovanović A; Petrov L; Anđelković B; Sofrenić I
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Study of the Tensile Behavior of Structures Obtained by FDM 3D Printing Process.
    Ben Hadj Hassine S; Chatti S; Louhichi B; Seibi A
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Fused Deposition Modelling Nozzle Temperature on the Rheology and Mechanical Properties of 3D Printed β-Tricalcium Phosphate (TCP)/Polylactic Acid (PLA) Composite.
    Elhattab K; Bhaduri SB; Sikder P
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparative Study of the Mechanical Properties of FDM 3D Prints Made of PLA and Carbon Fiber-Reinforced PLA for Thin-Walled Applications.
    Bochnia J; Blasiak M; Kozior T
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameters Affecting the Mechanical Properties of Three-Dimensional (3D) Printed Carbon Fiber-Reinforced Polylactide Composites.
    Lee D; Wu GY
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33114103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties.
    Guo W; Yang Y; Liu C; Bu W; Guo F; Li J; Wang E; Peng Z; Mai H; You H; Long Y
    J Mech Behav Biomed Mater; 2023 Jun; 142():105848. PubMed ID: 37099921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fused Deposition Modelling of Polymer Composite: A Progress.
    Mogan J; Harun WSW; Kadirgama K; Ramasamy D; Foudzi FM; Sulong AB; Tarlochan F; Ahmad F
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.