BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38625409)

  • 1. Low-temperature synthesis of porous organic polymers with donor-acceptor structure and β-ketoenamine for photocatalytic oxidative coupling of amines.
    Sang R; Hu Y; Shen Z; Zhao G; Yue J; Huang X
    Nanoscale; 2024 May; 16(18):8931-8940. PubMed ID: 38625409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vinylene-bridged donor-acceptor type porous organic polymers for enhanced photocatalysis of amine oxidative coupling reactions under visible light.
    Wu B; Jiang X; Liu Y; Li QY; Zhao X; Wang XJ
    RSC Adv; 2021 Oct; 11(53):33653-33660. PubMed ID: 35497515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Novel Phenyl Porous Organic Polymers and Their Excellent Visible Light Photocatalytic Performance on Antibiotics.
    Gao X; Liu J; Liu Z; Deng Y; Nie W; Zhang L; Xie Z; Chen L; Zhou A
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topotactic Synthesis of Phosphabenzene-Functionalized Porous Organic Polymers: Efficient Ligands in CO
    Yang Z; Chen H; Li B; Guo W; Jie K; Sun Y; Jiang DE; Popovs I; Dai S
    Angew Chem Int Ed Engl; 2019 Sep; 58(39):13763-13767. PubMed ID: 31310437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green, General and Low-cost Synthesis of Porous Organic Polymers in Sub-kilogram Scale for Catalysis and CO
    Luo D; Shi T; Li QH; Xu Q; Strømme M; Zhang QF; Xu C
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202305225. PubMed ID: 37104116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diaryl Dihydrophenazine-Based Porous Organic Polymers Enhance Synergistic Catalysis in Visible-Light-Driven Organic Transformations.
    Cheng Y; Li YX; Liu CH; Zhu YY; Lin W
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202310470. PubMed ID: 37615272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Irreversible tautomerization as a powerful tool to access unprecedented functional porous organic polymers with a tris(β-keto-hydrazo)cyclohexane subunit (TKH-POPs).
    Liu X; Luo XS; Fu HX; Fan W; Chen SL; Huang MH
    Chem Commun (Camb); 2020 Feb; 56(14):2103-2106. PubMed ID: 31970353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide.
    Du J; Ouyang H; Tan B
    Chem Asian J; 2021 Dec; 16(23):3833-3850. PubMed ID: 34605613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications.
    Li Y; Liu M; Wu J; Li J; Yu X; Zhang Q
    Front Optoelectron; 2022 Sep; 15(1):38. PubMed ID: 36637691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superlative Porous Organic Polymers for Photochemical and Electrochemical CO
    Ali SA; Sadiq I; Ahmad T
    Langmuir; 2024 May; 40(20):10414-10432. PubMed ID: 38728278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Covalent Triazine-Based Framework Consisting of Donor-Acceptor Dyads for Visible-Light-Driven Photocatalytic CO
    Zhong H; Hong Z; Yang C; Li L; Xu Y; Wang X; Wang R
    ChemSusChem; 2019 Oct; 12(19):4493-4499. PubMed ID: 31379104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating Suitable Linkage of Covalent Organic Frameworks into Covalently Bridged Inorganic/Organic Hybrids toward Efficient Photocatalysis.
    Wang H; Qian C; Liu J; Zeng Y; Wang D; Zhou W; Gu L; Wu H; Liu G; Zhao Y
    J Am Chem Soc; 2020 Mar; 142(10):4862-4871. PubMed ID: 32073853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confined synthesis of conjugated microporous polymers for selective photocatalytic oxidation of amines.
    You S; Ding Z; Yuan R; Long J; Xu C
    J Colloid Interface Sci; 2024 Jun; 664():63-73. PubMed ID: 38460385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional donor-acceptor conjugated porous polymers based on metal-porphyrin and triazine for highly effective photodegradation of organic pollutants in water.
    Xu Z; Dong W; Cui X; Duan Q
    Chemosphere; 2024 May; 355():141801. PubMed ID: 38552804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H
    Trang TNQ; Phan TB; Nam ND; Thu VTH
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing Donor-Acceptor Interactions and Particle Dispersibility of Covalent Triazine Frameworks for Higher Crystallinity and Enhanced Photocatalytic Activity.
    Wang H; Shi L; Qu Z; Zhang L; Wang X; Wang Y; Liu S; Ma H; Guo Z
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2296-2308. PubMed ID: 38189244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs).
    Naghdi S; Shahrestani MM; Zendehbad M; Djahaniani H; Kazemian H; Eder D
    J Hazard Mater; 2023 Jan; 442():130127. PubMed ID: 36303355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Side-Chain Molecular Engineering of Triazole-Based Donor-Acceptor Polymeric Photocatalysts with Strong Electron Push-Pull Interactions.
    Luo Z; Chen X; Hu Y; Chen X; Lin W; Wu X; Wang X
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202304875. PubMed ID: 37243933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating Charge Transfer Pathways to Enhance Photocatalytic Performance of the Metal-Organic Layer Nanosheet.
    Chen Y; Wang PM; Chen ZT; Li B
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46982-46994. PubMed ID: 37769278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Application of Porous Organic Polymers as Metal Free Photocatalysts in Organic Synthesis.
    Debruyne M; Van Der Voort P; Van Speybroeck V; Stevens CV
    Chemistry; 2024 May; 30(29):e202400311. PubMed ID: 38499471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.