These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38625534)
1. Role of the Cerebellum in the Construction of Functional and Geometrical Spaces. Langlois ET; Bennequin D; de Marco G Cerebellum; 2024 Dec; 23(6):2538-2563. PubMed ID: 38625534 [TBL] [Abstract][Full Text] [Related]
2. Does the Cerebellum Implement or Select Geometries? A Speculative Note. Habas C; Berthoz A; Flash T; Bennequin D Cerebellum; 2020 Apr; 19(2):336-342. PubMed ID: 31898281 [TBL] [Abstract][Full Text] [Related]
3. Affine differential geometry analysis of human arm movements. Flash T; Handzel AA Biol Cybern; 2007 Jun; 96(6):577-601. PubMed ID: 17406889 [TBL] [Abstract][Full Text] [Related]
4. Complex unconstrained three-dimensional hand movement and constant equi-affine speed. Maoz U; Berthoz A; Flash T J Neurophysiol; 2009 Feb; 101(2):1002-15. PubMed ID: 19073811 [TBL] [Abstract][Full Text] [Related]
6. Parabolic movement primitives and cortical states: merging optimality with geometric invariance. Polyakov F; Stark E; Drori R; Abeles M; Flash T Biol Cybern; 2009 Feb; 100(2):159-84. PubMed ID: 19152065 [TBL] [Abstract][Full Text] [Related]
7. Movement timing and invariance arise from several geometries. Bennequin D; Fuchs R; Berthoz A; Flash T PLoS Comput Biol; 2009 Jul; 5(7):e1000426. PubMed ID: 19593380 [TBL] [Abstract][Full Text] [Related]
8. Affine differential geometry and smoothness maximization as tools for identifying geometric movement primitives. Polyakov F Biol Cybern; 2017 Feb; 111(1):5-24. PubMed ID: 27822891 [TBL] [Abstract][Full Text] [Related]
9. A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. Biess A; Liebermann DG; Flash T J Neurosci; 2007 Nov; 27(48):13045-64. PubMed ID: 18045899 [TBL] [Abstract][Full Text] [Related]
10. A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Grossberg S; Paine RW Neural Netw; 2000; 13(8-9):999-1046. PubMed ID: 11156206 [TBL] [Abstract][Full Text] [Related]
11. Timing of continuous motor imagery: the two-thirds power law originates in trajectory planning. Karklinsky M; Flash T J Neurophysiol; 2015 Apr; 113(7):2490-9. PubMed ID: 25609105 [TBL] [Abstract][Full Text] [Related]
12. Effect of speed manipulation on the control of aperture closure during reach-to-grasp movements. Rand MK; Squire LM; Stelmach GE Exp Brain Res; 2006 Sep; 174(1):74-85. PubMed ID: 16565810 [TBL] [Abstract][Full Text] [Related]
13. Neural representations of kinematic laws of motion: evidence for action-perception coupling. Dayan E; Casile A; Levit-Binnun N; Giese MA; Hendler T; Flash T Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20582-7. PubMed ID: 18079289 [TBL] [Abstract][Full Text] [Related]
14. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay. Salimi-Badr A; Ebadzadeh MM; Darlot C Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878 [TBL] [Abstract][Full Text] [Related]
15. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. Todorov E; Jordan MI J Neurophysiol; 1998 Aug; 80(2):696-714. PubMed ID: 9705462 [TBL] [Abstract][Full Text] [Related]
17. Complex Upper-Limb Movements Are Generated by Combining Motor Primitives that Scale with the Movement Size. Miranda JGV; Daneault JF; Vergara-Diaz G; Torres ÂFSOE; Quixadá AP; Fonseca ML; Vieira JPBC; Dos Santos VS; da Figueiredo TC; Pinto EB; Peña N; Bonato P Sci Rep; 2018 Aug; 8(1):12918. PubMed ID: 30150687 [TBL] [Abstract][Full Text] [Related]
18. Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study. Shirinbayan SI; Dreyer AM; Rieger JW Hum Brain Mapp; 2019 Jan; 40(1):151-162. PubMed ID: 30251771 [TBL] [Abstract][Full Text] [Related]
19. The role of the cerebellum for predictive control of grasping. Nowak DA; Topka H; Timmann D; Boecker H; Hermsdörfer J Cerebellum; 2007; 6(1):7-17. PubMed ID: 17366262 [TBL] [Abstract][Full Text] [Related]
20. Kinematics of a coordinated goal-directed bimanual task. Kazennikov O; Perrig S; Wiesendanger M Behav Brain Res; 2002 Aug; 134(1-2):83-91. PubMed ID: 12191795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]