BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38625567)

  • 21. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts.
    Raveendran A; Chandran M; Dhanusuraman R
    RSC Adv; 2023 Jan; 13(6):3843-3876. PubMed ID: 36756592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphide-Based Electrocatalysts for Urea Electrolysis: Recent Trends and Progress.
    Kumar S; Bhanuse GB; Fu YP
    Chemphyschem; 2024 Apr; 25(8):e202300924. PubMed ID: 38366133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3 D Porous Nickel-Cobalt Nitrides Supported on Nickel Foam as Efficient Electrocatalysts for Overall Water Splitting.
    Wang Y; Zhang B; Pan W; Ma H; Zhang J
    ChemSusChem; 2017 Nov; 10(21):4170-4177. PubMed ID: 28857449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Transition Metal Tellurides (TMTs) and Phosphides (TMPs) for Hydrogen Evolution Electrocatalysis.
    Shah SSA; Khan NA; Imran M; Rashid M; Tufail MK; Rehman AU; Balkourani G; Sohail M; Najam T; Tsiakaras P
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis.
    Guo B; Ding Y; Huo H; Wen X; Ren X; Xu P; Li S
    Nanomicro Lett; 2023 Mar; 15(1):57. PubMed ID: 36862225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wood-Structured Nanomaterials as Highly Efficient, Self-Standing Electrocatalysts for Water Splitting.
    Huang J; Shi Z; Mao C; Yang G; Chen Y
    Small; 2024 Jun; ():e2402511. PubMed ID: 38837861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives.
    Ghosh S; Basu RN
    Nanoscale; 2018 Jun; 10(24):11241-11280. PubMed ID: 29897365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting.
    Guo Y; Park T; Yi JW; Henzie J; Kim J; Wang Z; Jiang B; Bando Y; Sugahara Y; Tang J; Yamauchi Y
    Adv Mater; 2019 Apr; 31(17):e1807134. PubMed ID: 30793387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting.
    Li Y; Huang B; Sun Y; Luo M; Yang Y; Qin Y; Wang L; Li C; Lv F; Zhang W; Guo S
    Small; 2019 Jan; 15(1):e1804212. PubMed ID: 30515971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives.
    Liu Y; Vijayakumar P; Liu Q; Sakthivel T; Chen F; Dai Z
    Nanomicro Lett; 2022 Jan; 14(1):43. PubMed ID: 34981288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting.
    Jiang Y; Lu Y
    Nanoscale; 2020 May; 12(17):9327-9351. PubMed ID: 32315016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Support and Interface Effects in Water-Splitting Electrocatalysts.
    Zhang J; Zhang Q; Feng X
    Adv Mater; 2019 Aug; 31(31):e1808167. PubMed ID: 30838688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review of modulation strategies for improving the catalytic performance of transition metal sulfide self-supported electrodes for the hydrogen evolution reaction.
    Liu Q; Liu K; Huang J; Hui C; Li X; Feng L
    Dalton Trans; 2024 Feb; 53(9):3959-3969. PubMed ID: 38294259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategies for Developing Transition Metal Phosphides in Electrochemical Water Splitting.
    Ying J; Wang H
    Front Chem; 2021; 9():700020. PubMed ID: 34805087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal Electrocatalysts for Hydrogen Production in Water Splitting.
    Kazemi A; Manteghi F; Tehrani Z
    ACS Omega; 2024 Feb; 9(7):7310-7335. PubMed ID: 38405471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal-Oxides- and Metal-Oxyhydroxides-Based Nanocomposites for Water Splitting: An Overview.
    Chen TW; Chen SM; Anushya G; Kannan R; Veerakumar P; Alam MM; Alargarsamy S; Ramachandran R
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alkaline Water Electrolysis for Green Hydrogen Production.
    Tüysüz H
    Acc Chem Res; 2024 Feb; 57(4):558-67. PubMed ID: 38335244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.