These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 38625645)
1. Metabolic Interaction Between Host and the Gut Microbiota During High-Fat Diet-Induced Colorectal Cancer. Lee C; Lee S; Yoo W J Microbiol; 2024 Mar; 62(3):153-165. PubMed ID: 38625645 [TBL] [Abstract][Full Text] [Related]
2. Gut Microbiota-Mediated Inflammation and Gut Permeability in Patients with Obesity and Colorectal Cancer. Sánchez-Alcoholado L; Ordóñez R; Otero A; Plaza-Andrade I; Laborda-Illanes A; Medina JA; Ramos-Molina B; Gómez-Millán J; Queipo-Ortuño MI Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32947866 [TBL] [Abstract][Full Text] [Related]
3. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Amabebe E; Robert FO; Agbalalah T; Orubu ESF Br J Nutr; 2020 May; 123(10):1127-1137. PubMed ID: 32008579 [TBL] [Abstract][Full Text] [Related]
4. High-Fat Diet Promotes Colorectal Tumorigenesis Through Modulating Gut Microbiota and Metabolites. Yang J; Wei H; Zhou Y; Szeto CH; Li C; Lin Y; Coker OO; Lau HCH; Chan AWH; Sung JJY; Yu J Gastroenterology; 2022 Jan; 162(1):135-149.e2. PubMed ID: 34461052 [TBL] [Abstract][Full Text] [Related]
5. Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer. John Kenneth M; Tsai HC; Fang CY; Hussain B; Chiu YC; Hsu BM J Adv Res; 2023 Oct; 52():45-57. PubMed ID: 36596411 [TBL] [Abstract][Full Text] [Related]
6. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Stecher B Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185088 [TBL] [Abstract][Full Text] [Related]
7. Berberine inhibits high fat diet-associated colorectal cancer through modulation of the gut microbiota-mediated lysophosphatidylcholine. Chen H; Ye C; Wu C; Zhang J; Xu L; Wang X; Xu C; Zhang J; Guo Y; Yao Q Int J Biol Sci; 2023; 19(7):2097-2113. PubMed ID: 37151876 [TBL] [Abstract][Full Text] [Related]
8. Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Yang Y; Zhang Y; Xu Y; Luo T; Ge Y; Jiang Y; Shi Y; Sun J; Le G Food Funct; 2019 Sep; 10(9):5952-5968. PubMed ID: 31475718 [TBL] [Abstract][Full Text] [Related]
9. Gut microbiota drives colon cancer risk associated with diet: a comparative analysis of meat-based and pesco-vegetarian diets. De Filippo C; Chioccioli S; Meriggi N; Troise AD; Vitali F; Mejia Monroy M; Özsezen S; Tortora K; Balvay A; Maudet C; Naud N; Fouché E; Buisson C; Dupuy J; Bézirard V; Chevolleau S; Tondereau V; Theodorou V; Maslo C; Aubry P; Etienne C; Giovannelli L; Longo V; Scaloni A; Cavalieri D; Bouwman J; Pierre F; Gérard P; Guéraud F; Caderni G Microbiome; 2024 Sep; 12(1):180. PubMed ID: 39334498 [TBL] [Abstract][Full Text] [Related]
10. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Loke YL; Chew MT; Ngeow YF; Lim WWD; Peh SC Front Cell Infect Microbiol; 2020; 10():603086. PubMed ID: 33364203 [TBL] [Abstract][Full Text] [Related]
11. Gut Epithelial Metabolism as a Key Driver of Intestinal Dysbiosis Associated with Noncommunicable Diseases. Shelton CD; Byndloss MX Infect Immun; 2020 Jun; 88(7):. PubMed ID: 32122941 [TBL] [Abstract][Full Text] [Related]
12. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Saha B; A T R; Adhikary S; Banerjee A; Radhakrishnan AK; Duttaroy AK; Pathak S Nutr Cancer; 2024; 76(9):789-814. PubMed ID: 39207359 [TBL] [Abstract][Full Text] [Related]
13. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Kong C; Gao R; Yan X; Huang L; Qin H Nutrition; 2019 Apr; 60():175-184. PubMed ID: 30611080 [TBL] [Abstract][Full Text] [Related]
14. The regulation of host cellular and gut microbial metabolism in the development and prevention of colorectal cancer. Zhou CB; Fang JY Crit Rev Microbiol; 2018 Aug; 44(4):436-454. PubMed ID: 29359994 [TBL] [Abstract][Full Text] [Related]
15. The Gut Commensal Escherichia coli Aggravates High-Fat-Diet-Induced Obesity and Insulin Resistance in Mice. Ju T; Bourrie BCT; Forgie AJ; Pepin DM; Tollenaar S; Sergi CM; Willing BP Appl Environ Microbiol; 2023 Mar; 89(3):e0162822. PubMed ID: 36809030 [TBL] [Abstract][Full Text] [Related]
16. The High-Fat Diet Based on Extra-Virgin Olive Oil Causes Dysbiosis Linked to Colorectal Cancer Prevention. Rodríguez-García C; Sánchez-Quesada C; Algarra I; Gaforio JJ Nutrients; 2020 Jun; 12(6):. PubMed ID: 32517306 [TBL] [Abstract][Full Text] [Related]
17. Gut microbiota-mediated xanthine metabolism is associated with resistance to high-fat diet-induced obesity. Wei B; Wang S; Wang Y; Ke S; Jin W; Chen J; Zhang H; Sun J; Henning SM; Wang J; Wang H J Nutr Biochem; 2021 Feb; 88():108533. PubMed ID: 33250443 [TBL] [Abstract][Full Text] [Related]
18. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Yang J; McDowell A; Kim EK; Seo H; Lee WH; Moon CM; Kym SM; Lee DH; Park YS; Jee YK; Kim YK Exp Mol Med; 2019 Oct; 51(10):1-15. PubMed ID: 31582724 [TBL] [Abstract][Full Text] [Related]
19. Commensal microbiota-derived metabolite agmatine triggers inflammation to promote colorectal tumorigenesis. Lu Y; Cui A; Zhang X Gut Microbes; 2024; 16(1):2348441. PubMed ID: 38706224 [TBL] [Abstract][Full Text] [Related]
20. Fusobacterium and Enterobacteriaceae: important players for CRC? Allen-Vercoe E; Jobin C Immunol Lett; 2014 Dec; 162(2 Pt A):54-61. PubMed ID: 24972311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]