These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38626392)
41. Bioverse: Functional, structural and contextual annotation of proteins and proteomes. McDermott J; Samudrala R Nucleic Acids Res; 2003 Jul; 31(13):3736-7. PubMed ID: 12824406 [TBL] [Abstract][Full Text] [Related]
42. Genome-wide survey of putative RNA-binding proteins encoded in the human proteome. Ghosh P; Sowdhamini R Mol Biosyst; 2016 Feb; 12(2):532-40. PubMed ID: 26675803 [TBL] [Abstract][Full Text] [Related]
43. A homology-guided, genome-based proteome for improved proteomics in the alloploid Nicotiana benthamiana. Kourelis J; Kaschani F; Grosse-Holz FM; Homma F; Kaiser M; van der Hoorn RAL BMC Genomics; 2019 Oct; 20(1):722. PubMed ID: 31585525 [TBL] [Abstract][Full Text] [Related]
45. pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana. Baerenfaller K; Hirsch-Hoffmann M; Svozil J; Hull R; Russenberger D; Bischof S; Lu Q; Gruissem W; Baginsky S Integr Biol (Camb); 2011 Mar; 3(3):225-37. PubMed ID: 21264403 [TBL] [Abstract][Full Text] [Related]
46. Covering complete proteomes with X-ray structures: a current snapshot. Mizianty MJ; Fan X; Yan J; Chalmers E; Woloschuk C; Joachimiak A; Kurgan L Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2781-93. PubMed ID: 25372670 [TBL] [Abstract][Full Text] [Related]
48. Chromosome-centric human proteome project: deciphering proteins associated with glioma and neurodegenerative disorders on chromosome 12. Gupta MK; Jayaram S; Madugundu AK; Chavan S; Advani J; Pandey A; Thongboonkerd V; Sirdeshmukh R J Proteome Res; 2014 Jul; 13(7):3178-90. PubMed ID: 24804578 [TBL] [Abstract][Full Text] [Related]
49. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment. Bouziane H; Chouarfia A J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314 [TBL] [Abstract][Full Text] [Related]
50. Architecture of the human interactome defines protein communities and disease networks. Huttlin EL; Bruckner RJ; Paulo JA; Cannon JR; Ting L; Baltier K; Colby G; Gebreab F; Gygi MP; Parzen H; Szpyt J; Tam S; Zarraga G; Pontano-Vaites L; Swarup S; White AE; Schweppe DK; Rad R; Erickson BK; Obar RA; Guruharsha KG; Li K; Artavanis-Tsakonas S; Gygi SP; Harper JW Nature; 2017 May; 545(7655):505-509. PubMed ID: 28514442 [TBL] [Abstract][Full Text] [Related]
51. Proteome driven re-evaluation and functional annotation of the Streptococcus pyogenes SF370 genome. Okamoto A; Yamada K BMC Microbiol; 2011 Nov; 11():249. PubMed ID: 22070424 [TBL] [Abstract][Full Text] [Related]
52. The different proteomes of Chlamydomonas reinhardtii. Valledor L; Recuenco-Munoz L; Egelhofer V; Wienkoop S; Weckwerth W J Proteomics; 2012 Oct; 75(18):5883-7. PubMed ID: 22967953 [TBL] [Abstract][Full Text] [Related]
53. The Proteome Folding Project: proteome-scale prediction of structure and function. Drew K; Winters P; Butterfoss GL; Berstis V; Uplinger K; Armstrong J; Riffle M; Schweighofer E; Bovermann B; Goodlett DR; Davis TN; Shasha D; Malmström L; Bonneau R Genome Res; 2011 Nov; 21(11):1981-94. PubMed ID: 21824995 [TBL] [Abstract][Full Text] [Related]
55. Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints. Greener JG; Kandathil SM; Jones DT Nat Commun; 2019 Sep; 10(1):3977. PubMed ID: 31484923 [TBL] [Abstract][Full Text] [Related]
56. Identifying the missing proteins in human proteome by biological language model. Dong Q; Wang K; Liu X BMC Syst Biol; 2016 Dec; 10(Suppl 4):113. PubMed ID: 28155671 [TBL] [Abstract][Full Text] [Related]
57. Use of Gene Ontology Annotation to understand the peroxisome proteome in humans. Mutowo-Meullenet P; Huntley RP; Dimmer EC; Alam-Faruque Y; Sawford T; Jesus Martin M; O'Donovan C; Apweiler R Database (Oxford); 2013; 2013():bas062. PubMed ID: 23327938 [TBL] [Abstract][Full Text] [Related]
58. CAPER: a chromosome-assembled human proteome browsER. Guo F; Wang D; Liu Z; Lu L; Zhang W; Sun H; Zhang H; Ma J; Wu S; Li N; Jiang Y; Zhu W; Qin J; Xu P; Li D; He F J Proteome Res; 2013 Jan; 12(1):179-86. PubMed ID: 23256906 [TBL] [Abstract][Full Text] [Related]
59. Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project. Cho JY; Lee HJ; Jeong SK; Kim KY; Kwon KH; Yoo JS; Omenn GS; Baker MS; Hancock WS; Paik YK J Proteome Res; 2015 Dec; 14(12):4959-66. PubMed ID: 26330117 [TBL] [Abstract][Full Text] [Related]
60. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Krystkowiak I; Davey NE Nucleic Acids Res; 2017 Jul; 45(W1):W464-W469. PubMed ID: 28387819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]