These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38626460)

  • 1. Tell Machine Learning Potentials What They Are Needed For: Simulation-Oriented Training Exemplified for Glycine.
    Ge F; Wang R; Qu C; Zheng P; Nandi A; Conte R; Houston PL; Bowman JM; Dral PO
    J Phys Chem Lett; 2024 Apr; 15(16):4451-4460. PubMed ID: 38626460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to train a neural network potential.
    Tokita AM; Behler J
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Potentials with the Iterative Boltzmann Inversion: Training to Experiment.
    Matin S; Allen AEA; Smith J; Lubbers N; Jadrich RB; Messerly R; Nebgen B; Li YW; Tretiak S; Barros K
    J Chem Theory Comput; 2024 Feb; 20(3):1274-1281. PubMed ID: 38307009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-dimensional, ab initio potential energy surface for glycine with characterization of stationary points and zero-point energy calculations by means of diffusion Monte Carlo and semiclassical dynamics.
    Conte R; Houston PL; Qu C; Li J; Bowman JM
    J Chem Phys; 2020 Dec; 153(24):244301. PubMed ID: 33380113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing Permutationally Invariant Polynomial and Symmetric Gradient Domain Machine Learning Potential Energy Surfaces for H
    Pandey P; Arandhara M; Houston PL; Qu C; Conte R; Bowman JM; Ramesh SG
    J Phys Chem A; 2024 Apr; 128(16):3212-3219. PubMed ID: 38624168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT-Quality Adsorption Simulations in Metal-Organic Frameworks Enabled by Machine Learning Potentials.
    Goeminne R; Vanduyfhuys L; Van Speybroeck V; Verstraelen T
    J Chem Theory Comput; 2023 Sep; 19(18):6313-6325. PubMed ID: 37642314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full and fragmented permutationally invariant polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomerization saddle points.
    Nandi A; Qu C; Bowman JM
    J Chem Phys; 2019 Aug; 151(8):084306. PubMed ID: 31470729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials.
    Chen MS; Morawietz T; Mori H; Markland TE; Artrith N
    J Chem Phys; 2021 Aug; 155(7):074801. PubMed ID: 34418919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical machine learning of potential energy surfaces.
    Dral PO; Owens A; Dral A; Csányi G
    J Chem Phys; 2020 May; 152(20):204110. PubMed ID: 32486656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning of Reactive Potentials.
    Yang Y; Zhang S; Ranasinghe KD; Isayev O; Roitberg AE
    Annu Rev Phys Chem; 2024 Jun; 75(1):371-395. PubMed ID: 38941524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast Near
    Lu F; Cheng L; DiRisio RJ; Finney JM; Boyer MA; Moonkaen P; Sun J; Lee SJR; Deustua JE; Miller TF; McCoy AB
    J Phys Chem A; 2022 Jun; 126(25):4013-4024. PubMed ID: 35715227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials.
    Sours TG; Kulkarni AR
    J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(3):1455-1463. PubMed ID: 36733763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine learning potential construction based on radial distribution function sampling.
    Watanabe N; Hori Y; Sugisawa H; Ida T; Shoji M; Shigeta Y
    J Comput Chem; 2024 Dec; 45(32):2949-2958. PubMed ID: 39225311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels.
    Dral PO; Owens A; Yurchenko SN; Thiel W
    J Chem Phys; 2017 Jun; 146(24):244108. PubMed ID: 28668062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate ab initio and "hybrid" potential energy surfaces, intramolecular vibrational energies, and classical ir spectrum of the water dimer.
    Shank A; Wang Y; Kaledin A; Braams BJ; Bowman JM
    J Chem Phys; 2009 Apr; 130(14):144314. PubMed ID: 19368452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable and accurate atomistic simulations of flexible molecules using conformationally generalisable machine learned potentials.
    Williams CD; Kalayan J; Burton NA; Bryce RA
    Chem Sci; 2024 Aug; 15(32):12780-12795. PubMed ID: 39148799
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.