These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38626712)
1. Investigations of the highly efficient processing technique, chemical constituents, and anti-inflammatory effect of N-ethyl-2-pyrrolidinone-substituted flavan-3-ol (EPSF)-enriched white tea. Gao J; Chen D; Xie D; Peng J; Hu Z; Lin Z; Dai W Food Chem; 2024 Aug; 450():139328. PubMed ID: 38626712 [TBL] [Abstract][Full Text] [Related]
2. Metabolomics Investigation Reveals That 8-C N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols Are Potential Marker Compounds of Stored White Teas. Dai W; Tan J; Lu M; Zhu Y; Li P; Peng Q; Guo L; Zhang Y; Xie D; Hu Z; Lin Z J Agric Food Chem; 2018 Jul; 66(27):7209-7218. PubMed ID: 29921123 [TBL] [Abstract][Full Text] [Related]
3. Dai W; Lou N; Xie D; Hu Z; Song H; Lu M; Shang D; Wu W; Peng J; Yin P; Lin Z J Agric Food Chem; 2020 Oct; 68(43):12164-12172. PubMed ID: 33074673 [TBL] [Abstract][Full Text] [Related]
4. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds. Xie D; Dai W; Lu M; Tan J; Zhang Y; Chen M; Lin Z Food Res Int; 2019 Nov; 125():108635. PubMed ID: 31554114 [TBL] [Abstract][Full Text] [Related]
5. Study on Jiang Z; Zhang H; Han Z; Zhai X; Qin C; Wen M; Lai G; Ho CT; Zhang L; Wan X J Agric Food Chem; 2022 Mar; 70(12):3832-3841. PubMed ID: 35289174 [No Abstract] [Full Text] [Related]
6. C-8 N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols from the Leaves of Camellia sinensis var. pubilimba. Meng XH; Zhu HT; Yan H; Wang D; Yang CR; Zhang YJ J Agric Food Chem; 2018 Jul; 66(27):7150-7155. PubMed ID: 29889511 [TBL] [Abstract][Full Text] [Related]
7. Metabolomics Analysis Reveals Four Novel Chen D; Zhao Y; Peng J; Zhang Y; Gao J; Wu W; Xie D; Hu Z; Lin Z; Dai W J Agric Food Chem; 2021 Nov; 69(46):14037-14047. PubMed ID: 34780189 [TBL] [Abstract][Full Text] [Related]
8. Formation Mechanism of Di- Jiang Z; Zhou F; Huo H; Han Z; Qin C; Ho CT; Zhang L; Wan X J Agric Food Chem; 2023 Feb; 71(6):2975-2989. PubMed ID: 36734013 [TBL] [Abstract][Full Text] [Related]
9. Isolation of Dai W; Ramos-Jerz M; Xie D; Peng J; Winterhalter P; Jerz G; Lin Z Molecules; 2021 Nov; 26(23):. PubMed ID: 34885862 [No Abstract] [Full Text] [Related]
10. New Flavoalkaloids with Potent α-Glucosidase and Acetylcholinesterase Inhibitory Activities from Yunnan Black Tea 'Jin-Ya'. Li N; Zhu HT; Wang D; Zhang M; Yang CR; Zhang YJ J Agric Food Chem; 2020 Jul; 68(30):7955-7963. PubMed ID: 32628847 [TBL] [Abstract][Full Text] [Related]
11. 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity. Wang W; Zhang L; Wang S; Shi S; Jiang Y; Li N; Tu P Food Chem; 2014; 152():539-45. PubMed ID: 24444972 [TBL] [Abstract][Full Text] [Related]
12. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Shi J; Yang G; You Q; Sun S; Chen R; Lin Z; Simal-Gandara J; Lv H Crit Rev Food Sci Nutr; 2023; 63(20):4757-4784. PubMed ID: 34898343 [TBL] [Abstract][Full Text] [Related]
13. Flavoalkaloids with a Pyrrolidinone Ring from Chinese Ancient Cultivated Tea Xi-Gui. Cheng J; Wu FH; Wang P; Ke JP; Wan XC; Qiu MH; Bao GH J Agric Food Chem; 2018 Aug; 66(30):7948-7957. PubMed ID: 29976052 [TBL] [Abstract][Full Text] [Related]
14. New insights into the influences of baking and storage on the nonvolatile compounds in oolong tea: A nontargeted and targeted metabolomics study. Peng J; Dai W; Lu M; Yan Y; Zhang Y; Chen D; Wu W; Gao J; Dong M; Lin Z Food Chem; 2022 May; 375():131872. PubMed ID: 34953237 [TBL] [Abstract][Full Text] [Related]
15. Stored white tea ameliorates DSS-induced ulcerative colitis in mice by modulating the composition of the gut microbiota and intestinal metabolites. Lin Z; Dai W; Hu S; Chen D; Yan H; Zeng L; Lin Z Food Funct; 2024 Apr; 15(8):4262-4275. PubMed ID: 38526548 [TBL] [Abstract][Full Text] [Related]
16. LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea. Zhou J; Wu Y; Long P; Ho CT; Wang Y; Kan Z; Cao L; Zhang L; Wan X J Agric Food Chem; 2019 May; 67(19):5405-5412. PubMed ID: 30485095 [TBL] [Abstract][Full Text] [Related]
17. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Chen Q; Shi J; Mu B; Chen Z; Dai W; Lin Z Food Chem; 2020 Dec; 332():127412. PubMed ID: 32623128 [TBL] [Abstract][Full Text] [Related]
18. Fuzhuanins A and B: the B-ring fission lactones of flavan-3-ols from Fuzhuan brick-tea. Luo ZM; Du HX; Li LX; An MQ; Zhang ZZ; Wan XC; Bao GH; Zhang L; Ling TJ J Agric Food Chem; 2013 Jul; 61(28):6982-90. PubMed ID: 23837839 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of anti-inflammatory potential of the leaves of Wendlandia heynei (Schult.) Santapau & Merchant in Sprague Dawley rat. Maryam S; Khan MR; Shah SA; Zahra Z; Batool R; Zai JA J Ethnopharmacol; 2019 Jun; 238():111849. PubMed ID: 30953822 [TBL] [Abstract][Full Text] [Related]
20. Plant Resources, Chemical Constituents, and Bioactivities of Tea Plants from the Genus Camellia Section Thea. Meng XH; Li N; Zhu HT; Wang D; Yang CR; Zhang YJ J Agric Food Chem; 2019 May; 67(19):5318-5349. PubMed ID: 30449099 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]