These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38626738)

  • 1. Chromaffin Cells in the Mammalian Adrenomedullary Tissue: Ultrastructural Aspects of Stimulus-Secretion Coupling - A Tribute to Odile Grynszpan-Winograd (1938-2023).
    Guérineau NC; Aunis D
    Neuroendocrinology; 2024; 114(6):511-516. PubMed ID: 38626738
    [No Abstract]   [Full Text] [Related]  

  • 2. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla.
    Guérineau NC
    Vitam Horm; 2024; 124():221-295. PubMed ID: 38408800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting the stimulus-secretion coupling in the adrenal medulla: role of gap junction-mediated intercellular communication.
    Colomer C; Desarménien MG; Guérineau NC
    Mol Neurobiol; 2009 Aug; 40(1):87-100. PubMed ID: 19444654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gap junction communication between chromaffin cells: the hidden face of adrenal stimulus-secretion coupling.
    Guérineau NC
    Pflugers Arch; 2018 Jan; 470(1):89-96. PubMed ID: 28735418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus-secretion coupling.
    Guérineau NC
    IUBMB Life; 2020 Apr; 72(4):553-567. PubMed ID: 31301221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap junction-mediated intercellular communication in the adrenal medulla: an additional ingredient of stimulus-secretion coupling regulation.
    Colomer C; Martin AO; Desarménien MG; Guérineau NC
    Biochim Biophys Acta; 2012 Aug; 1818(8):1937-51. PubMed ID: 21839720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells.
    Lopez I; Giner D; Ruiz-Nuño A; Fuentealba J; Viniegra S; Garcia AG; Davletov B; Gutiérrez LM
    Cell Calcium; 2007 Jun; 41(6):547-58. PubMed ID: 17112584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forty years of the adrenal chromaffin cell through ISCCB meetings around the world.
    Maneu V; Borges R; Gandía L; García AG
    Pflugers Arch; 2023 Jun; 475(6):667-690. PubMed ID: 36884064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in adrenal gland medulla and dopamine effects induced by the lack of Irs2.
    Catalano-Iniesta L; Iglesias-Osma MC; Sánchez-Robledo V; Carretero-Hernández M; Blanco EJ; Carretero J; García-Barrado MJ
    J Physiol Biochem; 2018 Nov; 74(4):667-677. PubMed ID: 30367392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential role of mitochondria in hypoxia sensing by adrenomedullary chromaffin cells.
    Buttigieg J; Zhang M; Thompson R; Nurse C
    Adv Exp Med Biol; 2006; 580():79-85; discussion 351-9. PubMed ID: 16683701
    [No Abstract]   [Full Text] [Related]  

  • 11. Functional remodeling of gap junction-mediated electrical communication between adrenal chromaffin cells in stressed rats.
    Colomer C; Olivos Ore LA; Coutry N; Mathieu MN; Arthaud S; Fontanaud P; Iankova I; Macari F; Thouënnon E; Yon L; Anouar Y; Guérineau NC
    J Neurosci; 2008 Jun; 28(26):6616-26. PubMed ID: 18579734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sigma-1 receptor ligands inhibit catecholamine secretion from adrenal chromaffin cells due to block of nicotinic acetylcholine receptors.
    Brindley RL; Bauer MB; Hartley ND; Horning KJ; Currie KPM
    J Neurochem; 2017 Oct; 143(2):171-182. PubMed ID: 28815595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adrenomedullary function is severely impaired in 21-hydroxylase-deficient mice.
    Bornstein SR; Tajima T; Eisenhofer G; Haidan A; Aguilera G
    FASEB J; 1999 Jul; 13(10):1185-94. PubMed ID: 10385609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basal and Stress-Induced Network Activity in the Adrenal Medulla
    Lopez Ruiz JR; Ernst SA; Holz RW; Stuenkel EL
    Front Endocrinol (Lausanne); 2022; 13():875865. PubMed ID: 35795145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-375 negatively regulates the synthesis and secretion of catecholamines by targeting Sp1 in rat adrenal medulla.
    Gai Y; Zhang J; Wei C; Cao W; Cui Y; Cui S
    Am J Physiol Cell Physiol; 2017 May; 312(5):C663-C672. PubMed ID: 28356269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recording of Chromaffin Cell Electrical Activity In Situ in Acute Adrenal Slices.
    Guérineau NC
    Methods Mol Biol; 2023; 2565():113-127. PubMed ID: 36205891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscarinic and nicotinic receptor-mediated Ca2+ dynamics in rat adrenal chromaffin cells during development.
    Oomori Y; Habara Y; Kanno T
    Cell Tissue Res; 1998 Oct; 294(1):109-23. PubMed ID: 9724461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between chromaffin and sustentacular cells in adrenal medulla of viscacha (Lagostomus maximus maximus).
    Rodriguez H; Filippa V; Mohamed F; Dominguez S; Scardapane L
    Anat Histol Embryol; 2007 Jun; 36(3):182-5. PubMed ID: 17535349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse?
    Smith CB; Eiden LE
    J Mol Neurosci; 2012 Oct; 48(2):403-12. PubMed ID: 22610912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulated exocytosis in chromaffin cells and cytotoxic T lymphocytes: how similar are they?
    Becherer U; Medart MR; Schirra C; Krause E; Stevens D; Rettig J
    Cell Calcium; 2012; 52(3-4):303-12. PubMed ID: 22560267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.