These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38626772)

  • 1. Osteopontin drives neuroinflammation and cell loss in MAPT-N279K frontotemporal dementia patient neurons.
    Al-Dalahmah O; Lam M; McInvale JJ; Qu W; Nguyen T; Mun JY; Kwon S; Ifediora N; Mahajan A; Humala N; Winters T; Angeles E; Jakubiak KA; Kühn R; Kim YA; De Rosa MC; Doege CA; Paryani F; Flowers X; Dovas A; Mela A; Lu H; DeTure MA; Vonsattel JP; Wszolek ZK; Dickson DW; Kuhlmann T; Zaehres H; Schöler HR; Sproul AA; Siegelin MD; De Jager PL; Goldman JE; Menon V; Canoll P; Hargus G
    Cell Stem Cell; 2024 May; 31(5):676-693.e10. PubMed ID: 38626772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein.
    Hallmann AL; Araúzo-Bravo MJ; Mavrommatis L; Ehrlich M; Röpke A; Brockhaus J; Missler M; Sterneckert J; Schöler HR; Kuhlmann T; Zaehres H; Hargus G
    Sci Rep; 2017 Mar; 7():42991. PubMed ID: 28256506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells.
    Wren MC; Zhao J; Liu CC; Murray ME; Atagi Y; Davis MD; Fu Y; Okano HJ; Ogaki K; Strongosky AJ; Tacik P; Rademakers R; Ross OA; Dickson DW; Wszolek ZK; Kanekiyo T; Bu G
    Mol Neurodegener; 2015 Sep; 10():46. PubMed ID: 26373282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MMP-9 and MMP-2 Contribute to Neuronal Cell Death in iPSC Models of Frontotemporal Dementia with MAPT Mutations.
    Biswas MHU; Almeida S; Lopez-Gonzalez R; Mao W; Zhang Z; Karydas A; Geschwind MD; Biernat J; Mandelkow EM; Futai K; Miller BL; Gao FB
    Stem Cell Reports; 2016 Sep; 7(3):316-324. PubMed ID: 27594586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical heterogeneity of frontotemporal dementia and Parkinsonism linked to chromosome 17 caused by MAPT N279K mutation in relation to tau positron emission tomography features.
    Ikeda A; Shimada H; Nishioka K; Takanashi M; Hayashida A; Li Y; Yoshino H; Funayama M; Ueno Y; Hatano T; Sahara N; Suhara T; Higuchi M; Hattori N
    Mov Disord; 2019 Apr; 34(4):568-574. PubMed ID: 30773680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia.
    Paonessa F; Evans LD; Solanki R; Larrieu D; Wray S; Hardy J; Jackson SP; Livesey FJ
    Cell Rep; 2019 Jan; 26(3):582-593.e5. PubMed ID: 30650353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebrospinal Fluid YKL-40 and Chitotriosidase Levels in Frontotemporal Dementia Vary by Clinical, Genetic and Pathological Subtype.
    Woollacott IOC; Nicholas JM; Heller C; Foiani MS; Moore KM; Russell LL; Paterson RW; Keshavan A; Schott JM; Warren JD; Heslegrave A; Zetterberg H; Rohrer JD
    Dement Geriatr Cogn Disord; 2020; 49(1):56-76. PubMed ID: 32344399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT.
    Sposito T; Preza E; Mahoney CJ; Setó-Salvia N; Ryan NS; Morris HR; Arber C; Devine MJ; Houlden H; Warner TT; Bushell TJ; Zagnoni M; Kunath T; Livesey FJ; Fox NC; Rossor MN; Hardy J; Wray S
    Hum Mol Genet; 2015 Sep; 24(18):5260-9. PubMed ID: 26136155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct Neurodegenerative Changes in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia Linked to Mutant TAU Protein.
    Ehrlich M; Hallmann AL; Reinhardt P; Araúzo-Bravo MJ; Korr S; Röpke A; Psathaki OE; Ehling P; Meuth SG; Oblak AL; Murrell JR; Ghetti B; Zaehres H; Schöler HR; Sterneckert J; Kuhlmann T; Hargus G
    Stem Cell Reports; 2015 Jul; 5(1):83-96. PubMed ID: 26143746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells.
    Lines G; Casey JM; Preza E; Wray S
    Mol Cell Neurosci; 2020 Dec; 109():103553. PubMed ID: 32956830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of Frontotemporal Dementia Using iPSC Technology.
    Kim M; Kim HJ; Koh W; Li L; Heo H; Cho H; Lyoo CH; Seo SW; Kim EJ; Nakanishi M; Na DL; Song J
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32727073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tau PET Imaging with [18F]PM-PBB3 in Frontotemporal Dementia with MAPT Mutation.
    Su Y; Fu J; Yu J; Zhao Q; Guan Y; Zuo C; Li M; Tan H; Cheng X
    J Alzheimers Dis; 2020; 76(1):149-157. PubMed ID: 32444551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses MAPT, GRN, and C9orf72 mutations in Chinese patients with frontotemporal dementia.
    Tang M; Gu X; Wei J; Jiao B; Zhou L; Zhou Y; Weng L; Yan X; Tang B; Xu J; Shen L
    Neurobiol Aging; 2016 Oct; 46():235.e11-5. PubMed ID: 27311648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations.
    Huang M; Modeste E; Dammer E; Merino P; Taylor G; Duong DM; Deng Q; Holler CJ; Gearing M; Dickson D; Seyfried NT; Kukar T
    Acta Neuropathol Commun; 2020 Oct; 8(1):163. PubMed ID: 33028409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model.
    van Olst L; Verhaege D; Franssen M; Kamermans A; Roucourt B; Carmans S; Ytebrouck E; van der Pol SMA; Wever D; Popovic M; Vandenbroucke RE; Sobrino T; Schouten M; de Vries HE
    Neurobiol Aging; 2020 May; 89():89-98. PubMed ID: 32008854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAPT genotype-dependent mitochondrial aberration and ROS production trigger dysfunction and death in cortical neurons of patients with hereditary FTLD.
    Korn L; Speicher AM; Schroeter CB; Gola L; Kaehne T; Engler A; Disse P; Fernández-Orth J; Csatári J; Naumann M; Seebohm G; Meuth SG; Schöler HR; Wiendl H; Kovac S; Pawlowski M
    Redox Biol; 2023 Feb; 59():102597. PubMed ID: 36599286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia.
    Lall D; Baloh RH
    J Clin Invest; 2017 Sep; 127(9):3250-3258. PubMed ID: 28737506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frontotemporal dementia with the V337M
    Spina S; Schonhaut DR; Boeve BF; Seeley WW; Ossenkoppele R; O'Neil JP; Lazaris A; Rosen HJ; Boxer AL; Perry DC; Miller BL; Dickson DW; Parisi JE; Jagust WJ; Murray ME; Rabinovici GD
    Neurology; 2017 Feb; 88(8):758-766. PubMed ID: 28130473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4R tau drives endolysosomal and autophagy dysfunction in frontotemporal dementia.
    Hung C; Patani R
    Autophagy; 2024 May; 20(5):1201-1202. PubMed ID: 38174587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of microglial metabolism and inflammatory profile contributes to neurotoxicity in a hiPSC-derived microglia model of frontotemporal dementia 3.
    Haukedal H; Syshøj Lorenzen S; Winther Westi E; Corsi GI; Gadekar VP; McQuade A; Davtyan H; Doncheva NT; Schmid B; Chandrasekaran A; Seemann SE; Cirera S; Blurton-Jones M; Meyer M; Gorodkin J; Aldana BI; Freude K
    Brain Behav Immun; 2023 Oct; 113():353-373. PubMed ID: 37543250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.