BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38627278)

  • 21. Identification of Novel Cuproptosis-Related Genes Mediating the Prognosis and Immune Microenvironment in Cholangiocarcinoma.
    Liu Q; Zhu J; Huang Z; Zhang X; Yang J
    Technol Cancer Res Treat; 2024; 23():15330338241239139. PubMed ID: 38613350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrative analyses identify CD73 as a prognostic biomarker and immunotherapeutic target in intrahepatic cholangiocarcinoma.
    Sun BY; Yang ZF; Wang ZT; Liu G; Zhou C; Zhou J; Fan J; Gan W; Yi Y; Qiu SJ
    World J Surg Oncol; 2023 Mar; 21(1):90. PubMed ID: 36899373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenetic dysregulation-mediated COL12A1 upregulation predicts worse outcome in intrahepatic cholangiocarcinoma patients.
    Tang Z; Yang Y; Zhang Q; Liang T
    Clin Epigenetics; 2023 Jan; 15(1):13. PubMed ID: 36694230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prognostic subclass of intrahepatic cholangiocarcinoma by integrative molecular-clinical analysis and potential targeted approach.
    Ahn KS; O'Brien D; Kang YN; Mounajjed T; Kim YH; Kim TS; Kocher JA; Allotey LK; Borad MJ; Roberts LR; Kang KJ
    Hepatol Int; 2019 Jul; 13(4):490-500. PubMed ID: 31214875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geospatial Immune Heterogeneity Reflects the Diverse Tumor-Immune Interactions in Intrahepatic Cholangiocarcinoma.
    Lin Y; Peng L; Dong L; Liu D; Ma J; Lin J; Chen X; Lin P; Song G; Zhang M; Liu Y; Rao J; Wei C; Lu Y; Zhang S; Ding G; Peng Z; Lu H; Wang X; Zhou J; Fan J; Wu K; Gao Q
    Cancer Discov; 2022 Oct; 12(10):2350-2371. PubMed ID: 35853232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming.
    Colyn L; Alvarez-Sola G; Latasa MU; Uriarte I; Herranz JM; Arechederra M; Vlachogiannis G; Rae C; Pineda-Lucena A; Casadei-Gardini A; Pedica F; Aldrighetti L; López-López A; López-Gonzálvez A; Barbas C; Ciordia S; Van Liempd SM; Falcón-Pérez JM; Urman J; Sangro B; Vicent S; Iraburu MJ; Prosper F; Nelson LJ; Banales JM; Martinez-Chantar ML; Marin JJG; Braconi C; Trautwein C; Corrales FJ; Cubero FJ; Berasain C; Fernandez-Barrena MG; Avila MA
    J Exp Clin Cancer Res; 2022 May; 41(1):183. PubMed ID: 35619118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SUOX and GLUT1 are biomarkers for the prognosis in large duct type intrahepatic cholangiocarcinoma.
    Kinjo Y; Naito Y; Akiba J; Sadashima E; Nakayama M; Tanigawa M; Hisaka T; Okabe Y; Yano H
    Hum Pathol; 2022 Oct; 128():11-19. PubMed ID: 35764144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of immune related gene signature for predicting prognosis of cholangiocarcinoma patients.
    Zhang ZJ; Huang YP; Liu ZT; Wang YX; Zhou H; Hou KX; Tang JW; Xiong L; Wen Y; Huang SF
    Front Immunol; 2023; 14():1028404. PubMed ID: 36817485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma.
    Ko S; Kim M; Molina L; Sirica AE; Monga SP
    Adv Cancer Res; 2022; 156():283-317. PubMed ID: 35961703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A lactate metabolism-related signature predicting patient prognosis and immune microenvironment in ovarian cancer.
    Zhu L; Lin Z; Wang K; Gu J; Chen X; Chen R; Wang L; Cheng X
    Front Endocrinol (Lausanne); 2024; 15():1372413. PubMed ID: 38529390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis.
    Mancarella S; Serino G; Dituri F; Cigliano A; Ribback S; Wang J; Chen X; Calvisi DF; Giannelli G
    Cell Death Differ; 2020 Aug; 27(8):2330-2343. PubMed ID: 32042099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of PDZK1IP1, EEF1A2 and RPL41 genes in intrahepatic cholangiocarcinoma.
    Yang G; Zong H
    Mol Med Rep; 2016 Jun; 13(6):4786-90. PubMed ID: 27082702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CircZNF215 promotes tumor growth and metastasis through inactivation of the PTEN/AKT pathway in intrahepatic cholangiocarcinoma.
    Liao W; Du J; Li L; Wu X; Chen X; Feng Q; Xu L; Chen X; Liao M; Huang J; Yuan K; Zeng Y
    J Exp Clin Cancer Res; 2023 May; 42(1):125. PubMed ID: 37198696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ACSL4 serves as a novel prognostic biomarker correlated with immune infiltration in Cholangiocarcinoma.
    Liu S; Fan S; Wang Y; Chen R; Wang Z; Zhang Y; Jiang W; Chen Y; Xu X; Yu Y; Li C; Li X
    BMC Cancer; 2023 May; 23(1):444. PubMed ID: 37193981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brahma-Related Gene 1 Inhibition Prevents Liver Fibrosis and Cholangiocarcinoma by Attenuating Progenitor Expansion.
    Zhou Y; Chen Y; Zhang X; Xu Q; Wu Z; Cao X; Shao M; Shu Y; Lv T; Lu C; Xie M; Wen T; Yang J; Shi Y; Bu H
    Hepatology; 2021 Aug; 74(2):797-815. PubMed ID: 33650193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning-based Development and Validation of a Cell Senescence Predictive and Prognostic Signature in Intrahepatic Cholangiocarcinoma.
    Yang R; Sun F; Shi Y; Wang H; Fan Y; Wu Y; Fan R; Wu S; Sun L
    J Cancer; 2024; 15(9):2810-2828. PubMed ID: 38577599
    [No Abstract]   [Full Text] [Related]  

  • 37. Syngeneic murine models with distinct immune microenvironments represent subsets of human intrahepatic cholangiocarcinoma.
    Tomlinson JL; Li B; Yang J; Loeuillard E; Stumpf HE; Kuipers H; Watkins R; Carlson DM; Willhite J; O'Brien DR; Graham RP; Chen X; Smoot RL; Dong H; Gores GJ; Ilyas SI
    J Hepatol; 2024 Jun; 80(6):892-903. PubMed ID: 38458319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma.
    Rhee H; Ko JE; Chung T; Jee BA; Kwon SM; Nahm JH; Seok JY; Yoo JE; Choi JS; Thorgeirsson SS; Andersen JB; Lee HS; Woo HG; Park YN
    Liver Int; 2018 Jan; 38(1):113-124. PubMed ID: 28608943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunosuppressive role of SPP1-CD44 in the tumor microenvironment of intrahepatic cholangiocarcinoma assessed by single-cell RNA sequencing.
    Cheng M; Liang G; Yin Z; Lin X; Sun Q; Liu Y
    J Cancer Res Clin Oncol; 2023 Aug; 149(9):5497-5512. PubMed ID: 36469154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways.
    Tiemin P; Fanzheng M; Peng X; Jihua H; Ruipeng S; Yaliang L; Yan W; Junlin X; Qingfu L; Zhefeng H; Jian L; Zihao G; Guoxing L; Boshi S; Ming Z; Qinghui M; Desen L; Lianxin L
    J Hepatol; 2020 Apr; 72(4):761-773. PubMed ID: 31837357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.