These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 38627326)
1. The rat acute oral toxicity of trifluoromethyl compounds (TFMs): a computational toxicology study combining the 2D-QSTR, read-across and consensus modeling methods. Lu X; Wang X; Chen S; Fan T; Zhao L; Zhong R; Sun G Arch Toxicol; 2024 Jul; 98(7):2213-2229. PubMed ID: 38627326 [TBL] [Abstract][Full Text] [Related]
2. In vivo toxicity of nitroaromatic compounds to rats: QSTR modelling and interspecies toxicity relationship with mouse. Hao Y; Sun G; Fan T; Tang X; Zhang J; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y J Hazard Mater; 2020 Nov; 399():122981. PubMed ID: 32534390 [TBL] [Abstract][Full Text] [Related]
3. Ecotoxicological Modeling, Ranking and Prioritization of Pharmaceuticals Using QSTR and i-QSTTR Approaches: Application of 2D and Fragment Based Descriptors. Khan K; Kar S; Sanderson H; Roy K; Leszczynski J Mol Inform; 2019 Aug; 38(8-9):e1800078. PubMed ID: 30474352 [TBL] [Abstract][Full Text] [Related]
4. Chemometric QSAR modeling of acute oral toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) to rat using simple 2D descriptors and interspecies toxicity modeling with mouse. Sun G; Zhang Y; Pei L; Lou Y; Mu Y; Yun J; Li F; Wang Y; Hao Z; Xi S; Li C; Chen C; Zhao L; Zhang N; Zhong R; Peng Y Ecotoxicol Environ Saf; 2021 Oct; 222():112525. PubMed ID: 34274838 [TBL] [Abstract][Full Text] [Related]
5. Prioritization of the ecotoxicological hazard of PAHs towards aquatic species spanning three trophic levels using 2D-QSTR, read-across and machine learning-driven modelling approaches. Li F; Wang P; Fan T; Zhang N; Zhao L; Zhong R; Sun G J Hazard Mater; 2024 Mar; 465():133410. PubMed ID: 38185092 [TBL] [Abstract][Full Text] [Related]
6. Toxicity prediction of 1,2,4-triazoles compounds by QSTR and interspecies QSTTR models. Liu Z; Dang K; Gao J; Fan P; Li C; Wang H; Li H; Deng X; Gao Y; Qian A Ecotoxicol Environ Saf; 2022 Sep; 242():113839. PubMed ID: 35816839 [TBL] [Abstract][Full Text] [Related]
8. Acute Rat and Mouse Oral Toxicity Determination of Anticholinesterase Inhibitor Carbamate Pesticides: A QSTR Approach. Roy PP; Banjare P; Verma S; Singh J Mol Inform; 2019 Aug; 38(8-9):e1800151. PubMed ID: 31066240 [TBL] [Abstract][Full Text] [Related]
9. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools. Roy K; Ghosh G Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717 [TBL] [Abstract][Full Text] [Related]
10. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides. Can A Toxicol Lett; 2014 Nov; 230(3):434-43. PubMed ID: 25149906 [TBL] [Abstract][Full Text] [Related]
11. First report on ecotoxicological QSTR and i-QSTR modeling for the prediction of acute ecotoxicity of diverse organic chemicals against three protozoan species. Kumar A; Kumar V; Podder T; Ojha PK Chemosphere; 2023 Sep; 335():139066. PubMed ID: 37257655 [TBL] [Abstract][Full Text] [Related]
12. Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches. Hossain KA; Roy K Ecotoxicol Environ Saf; 2018 Dec; 166():92-101. PubMed ID: 30253287 [TBL] [Abstract][Full Text] [Related]
13. Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by Ant Colony Optimization-Support Vector Machine QSTR models. Aalizadeh R; von der Ohe PC; Thomaidis NS Environ Sci Process Impacts; 2017 Mar; 19(3):438-448. PubMed ID: 28234392 [TBL] [Abstract][Full Text] [Related]
14. Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling. Devillers J SAR QSAR Environ Res; 2004; 15(5-6):501-10. PubMed ID: 15669705 [TBL] [Abstract][Full Text] [Related]
15. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach. Abbasitabar F; Zare-Shahabadi V Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509 [TBL] [Abstract][Full Text] [Related]
16. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect. Kleandrova VV; Luan F; Speck-Planche A; Cordeiro MN Mini Rev Med Chem; 2015; 15(8):677-86. PubMed ID: 25694074 [TBL] [Abstract][Full Text] [Related]
17. Identification of structural fingerprints for Mondal D; Ghosh K; Baidya ATK; Gantait AM; Gayen S Toxicol Mech Methods; 2020 May; 30(4):257-265. PubMed ID: 31876230 [TBL] [Abstract][Full Text] [Related]
18. Ecotoxicological QSAR modelling of the acute toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic organisms: Consensus modelling and comparison with ECOSAR. Li F; Sun G; Fan T; Zhang N; Zhao L; Zhong R; Peng Y Aquat Toxicol; 2023 Feb; 255():106393. PubMed ID: 36621240 [TBL] [Abstract][Full Text] [Related]
19. Support vector machine-based model for toxicity of organic compounds against fish. Yu X Regul Toxicol Pharmacol; 2021 Jul; 123():104942. PubMed ID: 33940084 [TBL] [Abstract][Full Text] [Related]
20. QSAR and Classification Study on Prediction of Acute Oral Toxicity of Fan T; Sun G; Zhao L; Cui X; Zhong R Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30282923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]