These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38627343)
41. Performance evaluation and kinetic modeling of down-flow high-rate anaerobic bioreactors for poultry slaughterhouse wastewater treatment. Njoya M; Basitere M; Ntwampe SKO; Lim JW Environ Sci Pollut Res Int; 2021 Feb; 28(8):9529-9541. PubMed ID: 33145736 [TBL] [Abstract][Full Text] [Related]
42. COD removal from leachate by electrocoagulation process: treatment with monopolar electrodes in parallel connection. Tanyol M; Ogedey A; Oguz E Water Sci Technol; 2018 Jan; 77(1-2):177-186. PubMed ID: 29339616 [TBL] [Abstract][Full Text] [Related]
43. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes. Yavuz Y; Ögütveren ÜB J Environ Manage; 2018 Feb; 207():151-158. PubMed ID: 29161644 [TBL] [Abstract][Full Text] [Related]
44. Purification and detoxification of petroleum refinery wastewater by electrocoagulation process. Gousmi N; Sahmi A; Li HZ; Poncin S; Djebbar R; Bensadok K Environ Technol; 2016 Sep; 37(18):2348-57. PubMed ID: 26853634 [TBL] [Abstract][Full Text] [Related]
45. Treatment and optimization of high-strength egg-wash wastewater effluent using electrocoagulation and electrooxidation methods. Bhatt P; Engel BA; Shivaram KB; Turco RF; Zhou Z; Simsek H Chemosphere; 2024 Jan; 347():140632. PubMed ID: 37967677 [TBL] [Abstract][Full Text] [Related]
46. Leachate treatment via electrocoagulation-coal-based powdered activated carbon process: Efficiencies, mechanisms, kinetics, and costs. Ogedey A; Oguz E Water Environ Res; 2024 Jun; 96(6):e11060. PubMed ID: 38847129 [TBL] [Abstract][Full Text] [Related]
47. Modeling and optimizing electro-persulfate processes using Fe and Al electrodes for paper industry wastewater treatment. Varank G; Yazici Guvenc S; Demir A; Kavan N; Donmez N; Onen ZT Water Sci Technol; 2020 Jan; 81(2):345-357. PubMed ID: 32333667 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater. Bani-Melhem K; Al-Kilani MR; Tawalbeh M Chemosphere; 2023 Jan; 310():136668. PubMed ID: 36209869 [TBL] [Abstract][Full Text] [Related]
49. Chemical oxygen demand and tannin/lignin removal from paper mill wastewater by electrocoagulation combined with peroxide and hypochlorite treatments. Caglak A; Sari-Erkan H; Onkal Engin G Environ Technol; 2024 Jun; 45(15):3076-3094. PubMed ID: 37105959 [TBL] [Abstract][Full Text] [Related]
50. Wastewater treatment in electrocoagulation systems: investigation of the impact of temperature using a fuzzy logic control algorithm. Demirci Y; Özbeyaz A Environ Sci Pollut Res Int; 2019 Oct; 26(30):30893-30906. PubMed ID: 31446601 [TBL] [Abstract][Full Text] [Related]
51. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system. Basitere M; Rinquest Z; Njoya M; Sheldon MS; Ntwampe SKO Water Sci Technol; 2017 Jul; 76(1-2):106-114. PubMed ID: 28708615 [TBL] [Abstract][Full Text] [Related]
52. Poultry slaughterhouse wastewater treatment plant for high quality effluent. Del Nery V; Damianovic MH; Moura RB; Pozzi E; Pires EC; Foresti E Water Sci Technol; 2016; 73(2):309-16. PubMed ID: 26819386 [TBL] [Abstract][Full Text] [Related]
53. Removal of disperse and reactive dyes from aqueous solutions using ultrasound-assisted electrocoagulation. Özyonar F; Gökkuş Ö; Sabuni M Chemosphere; 2020 Nov; 258():127325. PubMed ID: 32540541 [TBL] [Abstract][Full Text] [Related]
54. An economical electrocoagulation process of a hazardous anionic azo dye wastewater with the combination of recycled electrodes and solar energy. Akkaya GK; Polat G; Nalçacı G; Eker YR Environ Sci Pollut Res Int; 2023 Jun; 30(27):70331-70347. PubMed ID: 37148509 [TBL] [Abstract][Full Text] [Related]
55. Optimization and toxicity assessment of a combined electrocoagulation, H GilPavas E; Dobrosz-Gómez I; Gómez-García MÁ Sci Total Environ; 2019 Feb; 651(Pt 1):551-560. PubMed ID: 30245411 [TBL] [Abstract][Full Text] [Related]
56. Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. Sengil IA; Ozacar M J Hazard Mater; 2006 Sep; 137(2):1197-205. PubMed ID: 16846691 [TBL] [Abstract][Full Text] [Related]
57. Combined process of electrocoagulation and photocatalytic degradation for the treatment of olive washing wastewater. Ates H; Dizge N; Yatmaz HC Water Sci Technol; 2017 Jan; 75(1-2):141-154. PubMed ID: 28067654 [TBL] [Abstract][Full Text] [Related]
58. Evaluation of the hybrid system combining electrocoagulation, nanofiltration and reverse osmosis for biologically treated textile effluent: Treatment efficiency and membrane fouling. Güneş E; Gönder ZB J Environ Manage; 2021 Sep; 294():113042. PubMed ID: 34126531 [TBL] [Abstract][Full Text] [Related]
59. Comprehensive study on the selection and performance of the best electrode pair for electrocoagulation of textile wastewater using multi-criteria decision-making methods (TOPSIS, VIKOR and PROMETHEE II). Ahmed T; Ahsan A; Khan MHRB; Nahian TK; Antar RH; Hasan A; Karim MR; Shafiquzzaman M; Imteaz M J Environ Manage; 2024 Jul; 363():121337. PubMed ID: 38850903 [TBL] [Abstract][Full Text] [Related]
60. Reduction of Turbidity and Chromium Content of Tannery Wastewater by Electrocoagulation Process. Ziati M; Khemmari F; Aitbara A; Hazourli S Water Environ Res; 2018 Jul; 90(7):598-603. PubMed ID: 29519271 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]