These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 38627439)
1. FIT calculator: a multi-risk prediction framework for medical outcomes using cardiorespiratory fitness data. Elshawi R; Sakr S; Al-Mallah MH; Keteyian SJ; Brawner CA; Ehrman JK Sci Rep; 2024 Apr; 14(1):8745. PubMed ID: 38627439 [TBL] [Abstract][Full Text] [Related]
2. On the interpretability of machine learning-based model for predicting hypertension. Elshawi R; Al-Mallah MH; Sakr S BMC Med Inform Decis Mak; 2019 Jul; 19(1):146. PubMed ID: 31357998 [TBL] [Abstract][Full Text] [Related]
3. Prediction of diabetes disease using an ensemble of machine learning multi-classifier models. Abnoosian K; Farnoosh R; Behzadi MH BMC Bioinformatics; 2023 Sep; 24(1):337. PubMed ID: 37697283 [TBL] [Abstract][Full Text] [Related]
4. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510 [TBL] [Abstract][Full Text] [Related]
5. A Mobile App That Addresses Interpretability Challenges in Machine Learning-Based Diabetes Predictions: Survey-Based User Study. Hendawi R; Li J; Roy S JMIR Form Res; 2023 Nov; 7():e50328. PubMed ID: 37955948 [TBL] [Abstract][Full Text] [Related]
6. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
7. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective. Olisah CC; Smith L; Smith M Comput Methods Programs Biomed; 2022 Jun; 220():106773. PubMed ID: 35429810 [TBL] [Abstract][Full Text] [Related]
8. A qualitative research framework for the design of user-centered displays of explanations for machine learning model predictions in healthcare. Barda AJ; Horvat CM; Hochheiser H BMC Med Inform Decis Mak; 2020 Oct; 20(1):257. PubMed ID: 33032582 [TBL] [Abstract][Full Text] [Related]
9. KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features. Qi H; Song X; Liu S; Zhang Y; Wong KKL Comput Methods Programs Biomed; 2023 Apr; 231():107378. PubMed ID: 36731312 [TBL] [Abstract][Full Text] [Related]
10. IHCP: interpretable hepatitis C prediction system based on black-box machine learning models. Fan Y; Lu X; Sun G BMC Bioinformatics; 2023 Sep; 24(1):333. PubMed ID: 37674125 [TBL] [Abstract][Full Text] [Related]
11. Interpretable machine learning models for hospital readmission prediction: a two-step extracted regression tree approach. Gao X; Alam S; Shi P; Dexter F; Kong N BMC Med Inform Decis Mak; 2023 Jun; 23(1):104. PubMed ID: 37277767 [TBL] [Abstract][Full Text] [Related]
12. Predicting hospital length of stay using machine learning on a large open health dataset. Jain R; Singh M; Rao AR; Garg R BMC Health Serv Res; 2024 Jul; 24(1):860. PubMed ID: 39075382 [TBL] [Abstract][Full Text] [Related]
13. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. Alaa AM; Bolton T; Di Angelantonio E; Rudd JHF; van der Schaar M PLoS One; 2019; 14(5):e0213653. PubMed ID: 31091238 [TBL] [Abstract][Full Text] [Related]
14. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. Sakr S; Elshawi R; Ahmed A; Qureshi WT; Brawner C; Keteyian S; Blaha MJ; Al-Mallah MH PLoS One; 2018; 13(4):e0195344. PubMed ID: 29668729 [TBL] [Abstract][Full Text] [Related]
15. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project. Alghamdi M; Al-Mallah M; Keteyian S; Brawner C; Ehrman J; Sakr S PLoS One; 2017; 12(7):e0179805. PubMed ID: 28738059 [TBL] [Abstract][Full Text] [Related]
16. Early Prediction of Diabetes Using an Ensemble of Machine Learning Models. Dutta A; Hasan MK; Ahmad M; Awal MA; Islam MA; Masud M; Meshref H Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231678 [TBL] [Abstract][Full Text] [Related]
17. Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries. Hong N; Wen A; Stone DJ; Tsuji S; Kingsbury PR; Rasmussen LV; Pacheco JA; Adekkanattu P; Wang F; Luo Y; Pathak J; Liu H; Jiang G J Biomed Inform; 2019 Nov; 99():103310. PubMed ID: 31622801 [TBL] [Abstract][Full Text] [Related]
18. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty. Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804 [TBL] [Abstract][Full Text] [Related]
19. A personalized prediction model for urinary tract infections in type 2 diabetes mellitus using machine learning. Xiong Y; Liu YM; Hu JQ; Zhu BQ; Wei YK; Yang Y; Wu XW; Long EW Front Pharmacol; 2023; 14():1259596. PubMed ID: 38269284 [TBL] [Abstract][Full Text] [Related]
20. Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson's disease. Junaid M; Ali S; Eid F; El-Sappagh S; Abuhmed T Comput Methods Programs Biomed; 2023 Jun; 234():107495. PubMed ID: 37003039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]