These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 38628114)

  • 1. stDiff: a diffusion model for imputing spatial transcriptomics through single-cell transcriptomics.
    Li K; Li J; Tao Y; Wang F
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38628114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics.
    Shengquan C; Boheng Z; Xiaoyang C; Xuegong Z; Rui J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i299-i307. PubMed ID: 34252941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging spatial transcriptomics data to recover cell locations in single-cell RNA-seq with CeLEry.
    Zhang Q; Jiang S; Schroeder A; Hu J; Li K; Zhang B; Dai D; Lee EB; Xiao R; Li M
    Nat Commun; 2023 Jul; 14(1):4050. PubMed ID: 37422469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GTAD: a graph-based approach for cell spatial composition inference from integrated scRNA-seq and ST-seq data.
    Zhang T; Zhang Z; Li L; Dong B; Wang G; Zhang D
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38127088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking mapping algorithms for cell-type annotating in mouse brain by integrating single-nucleus RNA-seq and Stereo-seq data.
    Tao Q; Xu Y; He Y; Luo T; Li X; Han L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38796691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adjustment of scRNA-seq data to improve cell-type decomposition of spatial transcriptomics.
    Wang L; Hu Y; Gao L
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. stAPAminer: Mining Spatial Patterns of Alternative Polyadenylation for Spatially Resolved Transcriptomic Studies.
    Ji G; Tang Q; Zhu S; Zhu J; Ye P; Xia S; Wu X
    Genomics Proteomics Bioinformatics; 2023 Jun; 21(3):601-618. PubMed ID: 36669641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics.
    Lakkis J; Wang D; Zhang Y; Hu G; Wang K; Pan H; Ungar L; Reilly MP; Li X; Li M
    Genome Res; 2021 Oct; 31(10):1753-1766. PubMed ID: 34035047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ENGEP: advancing spatial transcriptomics with accurate unmeasured gene expression prediction.
    Yang ST; Zhang XF
    Genome Biol; 2023 Dec; 24(1):293. PubMed ID: 38129866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scDMAE: A Generative Denoising Model Adopted Mask Strategy for scRNA-Seq Data Recovery.
    Liu W; Pan Y; Teng Z; Xu J
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3772-3780. PubMed ID: 38568766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scHinter: imputing dropout events for single-cell RNA-seq data with limited sample size.
    Ye P; Ye W; Ye C; Li S; Ye L; Ji G; Wu X
    Bioinformatics; 2020 Feb; 36(3):789-797. PubMed ID: 31392316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.
    Xu X; Yu X; Hu G; Wang K; Zhang J; Li X
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPCS: a spatial and pattern combined smoothing method for spatial transcriptomic expression.
    Liu Y; Wang T; Duggan B; Sharpnack M; Huang K; Zhang J; Ye X; Johnson TS
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope.
    Wan X; Xiao J; Tam SST; Cai M; Sugimura R; Wang Y; Wan X; Lin Z; Wu AR; Yang C
    Nat Commun; 2023 Nov; 14(1):7848. PubMed ID: 38030617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.